Update laplace2.lean
This commit is contained in:
parent
07f4ff610b
commit
c59e12a468
@ -12,13 +12,35 @@ variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDim
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||
|
||||
|
||||
lemma vectorPresentation'
|
||||
[Fintype ι]
|
||||
(b : OrthonormalBasis ι ℝ E)
|
||||
--(hb : Orthonormal ℝ b)
|
||||
(v : E) :
|
||||
v = ∑ i, ⟪b i, v⟫_ℝ • (b i) := by
|
||||
|
||||
let A := b.sum_repr v
|
||||
let i : ι := by sorry
|
||||
let B := b.repr v i
|
||||
|
||||
|
||||
nth_rw 1 [← (b.sum_repr v)]
|
||||
apply Fintype.sum_congr
|
||||
intro i
|
||||
--let A := b.repr v
|
||||
--have : (b.repr v) = ((OrthonormalBasis.toBasis b).repr v) := by tauto
|
||||
rw [← Orthonormal.inner_right_finsupp hb (b.repr v) i]
|
||||
simp
|
||||
|
||||
|
||||
|
||||
lemma vectorPresentation
|
||||
[Fintype ι]
|
||||
(b : Basis ι ℝ E)
|
||||
(hb : Orthonormal ℝ b)
|
||||
(v : E) :
|
||||
v = ∑ i, ⟪b i, v⟫_ℝ • (b i) := by
|
||||
nth_rw 1 [← (b.sum_repr v)]
|
||||
nth_rw 1 [← (b.sum_repr v)]
|
||||
apply Fintype.sum_congr
|
||||
intro i
|
||||
rw [← Orthonormal.inner_right_finsupp hb (b.repr v) i]
|
||||
@ -31,7 +53,7 @@ theorem BilinearCalc
|
||||
(c : ι → ℝ)
|
||||
(L : ContinuousMultilinearMap ℝ (fun (_ : Fin 2) ↦ E) F) :
|
||||
L (fun _ => ∑ j : ι, c j • v j) = ∑ x : Fin 2 → ι, (c (x 0) * c (x 1)) • L ((fun i => v (x i))) := by
|
||||
|
||||
|
||||
rw [L.map_sum]
|
||||
conv =>
|
||||
left
|
||||
@ -67,7 +89,7 @@ lemma fin_sum
|
||||
rw [← Fintype.sum_prod_type']
|
||||
apply Fintype.sum_equiv (finTwoArrowEquiv ι)
|
||||
intro x
|
||||
dsimp
|
||||
dsimp
|
||||
|
||||
|
||||
theorem LaplaceIndep
|
||||
@ -80,9 +102,9 @@ theorem LaplaceIndep
|
||||
∑ i, L (fun _ ↦ v₁ i) = ∑ i, L (fun _ => v₂ i) := by
|
||||
|
||||
have vector_vs_function
|
||||
{y : Fin 2 → ι}
|
||||
{y : Fin 2 → ι}
|
||||
{v : ι → E}
|
||||
: (fun i => v (y i)) = ![v (y 0), v (y 1)] := by
|
||||
: (fun i => v (y i)) = ![v (y 0), v (y 1)] := by
|
||||
funext i
|
||||
by_cases h : i = 0
|
||||
· rw [h]
|
||||
@ -107,13 +129,13 @@ theorem LaplaceIndep
|
||||
simp
|
||||
|
||||
rw [fin_sum (fun i₀ ↦ (fun i₁ ↦ ⟪v₁ i₀, v₁ i₁⟫_ℝ • L ![v₁ i₀, v₁ i₁]))]
|
||||
|
||||
|
||||
have xx {r₀ : ι} : ∀ r₁ : ι, r₁ ≠ r₀ → ⟪v₁ r₀, v₁ r₁⟫_ℝ • L ![v₁ r₀, v₁ r₁] = 0 := by
|
||||
intro r₁ hr₁
|
||||
rw [orthonormal_iff_ite.1 hv₁]
|
||||
simp
|
||||
tauto
|
||||
|
||||
|
||||
conv =>
|
||||
right
|
||||
arg 2
|
||||
@ -142,7 +164,7 @@ theorem LaplaceIndep'
|
||||
(hv₁ : Orthonormal ℝ v₁)
|
||||
(v₂ : Basis ι ℝ E)
|
||||
(hv₂ : Orthonormal ℝ v₂)
|
||||
(f : E → F)
|
||||
(f : E → F)
|
||||
: (Laplace_wrt_basis v₁ hv₁ f) = (Laplace_wrt_basis v₂ hv₂ f) := by
|
||||
|
||||
funext z
|
||||
@ -150,7 +172,7 @@ theorem LaplaceIndep'
|
||||
let XX := LaplaceIndep v₁ hv₁ v₂ hv₂ (iteratedFDeriv ℝ 2 f z)
|
||||
have vector_vs_function
|
||||
{v : E}
|
||||
: ![v, v] = (fun _ => v) := by
|
||||
: ![v, v] = (fun _ => v) := by
|
||||
funext i
|
||||
by_cases h : i = 0
|
||||
· rw [h]
|
||||
@ -177,7 +199,7 @@ theorem LaplaceIndep''
|
||||
[Fintype ι₂] [DecidableEq ι₂]
|
||||
(v₂ : Basis ι₂ ℝ E)
|
||||
(hv₂ : Orthonormal ℝ v₂)
|
||||
(f : E → F)
|
||||
(f : E → F)
|
||||
: (Laplace_wrt_basis v₁ hv₁ f) = (Laplace_wrt_basis v₂ hv₂ f) := by
|
||||
|
||||
have b : ι₁ ≃ ι₂ := by
|
||||
@ -186,9 +208,9 @@ theorem LaplaceIndep''
|
||||
rw [← FiniteDimensional.finrank_eq_card_basis v₂]
|
||||
|
||||
let v'₁ := Basis.reindex v₁ b
|
||||
have hv'₁ : Orthonormal ℝ v'₁ := by
|
||||
have hv'₁ : Orthonormal ℝ v'₁ := by
|
||||
let A := Basis.reindex_apply v₁ b
|
||||
have : ⇑v'₁ = v₁ ∘ b.symm := by
|
||||
have : ⇑v'₁ = v₁ ∘ b.symm := by
|
||||
funext i
|
||||
exact A i
|
||||
rw [this]
|
||||
@ -209,7 +231,7 @@ theorem LaplaceIndep''
|
||||
|
||||
|
||||
noncomputable def Laplace
|
||||
(f : E → F)
|
||||
(f : E → F)
|
||||
: E → F := by
|
||||
exact Laplace_wrt_basis (stdOrthonormalBasis ℝ E).toBasis (stdOrthonormalBasis ℝ E).orthonormal f
|
||||
|
||||
@ -218,11 +240,11 @@ theorem LaplaceIndep'''
|
||||
[Fintype ι] [DecidableEq ι]
|
||||
(v : Basis ι ℝ E)
|
||||
(hv : Orthonormal ℝ v)
|
||||
(f : E → F)
|
||||
(f : E → F)
|
||||
: (Laplace f) = (Laplace_wrt_basis v hv f) := by
|
||||
|
||||
unfold Laplace
|
||||
apply LaplaceIndep'' (stdOrthonormalBasis ℝ E).toBasis (stdOrthonormalBasis ℝ E).orthonormal v hv f
|
||||
apply LaplaceIndep'' (stdOrthonormalBasis ℝ E).toBasis (stdOrthonormalBasis ℝ E).orthonormal v hv f
|
||||
|
||||
|
||||
theorem Complex.Laplace'
|
||||
@ -232,4 +254,3 @@ theorem Complex.Laplace'
|
||||
rw [LaplaceIndep''' Complex.orthonormalBasisOneI.toBasis Complex.orthonormalBasisOneI.orthonormal f]
|
||||
unfold Laplace_wrt_basis
|
||||
simp
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user