Update stronglyMeromorphicOn_eliminate.lean
This commit is contained in:
parent
b3eefceb39
commit
6294e3c4ea
|
@ -337,9 +337,32 @@ theorem MeromorphicOn.decompose₃
|
|||
|
||||
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := MeromorphicOn.decompose₂ h₁f (P := P) hP
|
||||
let h := ∏ p ∈ P, fun z => (z - p.1) ^ h₁f.meromorphicOn.divisor p.1
|
||||
have h₁h : MeromorphicOn h U := by
|
||||
sorry
|
||||
have h₂h : StronglyMeromorphicOn h U := by
|
||||
-- WARNING: This is a general lemma we should add!
|
||||
intro u hu
|
||||
right
|
||||
by_cases h₁u : ⟨u, hu⟩ ∈ P
|
||||
· sorry
|
||||
· use 0
|
||||
use h
|
||||
simp only [zpow_zero, smul_eq_mul, one_mul, eventually_true, and_true]
|
||||
constructor
|
||||
·
|
||||
sorry
|
||||
· unfold h
|
||||
simp only [Finset.prod_apply]
|
||||
rw [Finset.prod_ne_zero_iff]
|
||||
intro p hp
|
||||
apply zpow_ne_zero
|
||||
rw [sub_ne_zero]
|
||||
by_contra hCon
|
||||
have : ⟨u, hu⟩ = p := by
|
||||
exact SetCoe.ext hCon
|
||||
rw [← this] at hp
|
||||
tauto
|
||||
|
||||
|
||||
have h₁h : MeromorphicOn h U := by
|
||||
sorry
|
||||
have h₃h : h₁h.divisor = h₁f.meromorphicOn.divisor := by
|
||||
sorry
|
||||
|
|
Loading…
Reference in New Issue