diff --git a/Nevanlinna/stronglyMeromorphicOn_eliminate.lean b/Nevanlinna/stronglyMeromorphicOn_eliminate.lean index a3248df..40194f9 100644 --- a/Nevanlinna/stronglyMeromorphicOn_eliminate.lean +++ b/Nevanlinna/stronglyMeromorphicOn_eliminate.lean @@ -337,9 +337,32 @@ theorem MeromorphicOn.decompose₃ obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := MeromorphicOn.decompose₂ h₁f (P := P) hP let h := ∏ p ∈ P, fun z => (z - p.1) ^ h₁f.meromorphicOn.divisor p.1 - have h₁h : MeromorphicOn h U := by - sorry have h₂h : StronglyMeromorphicOn h U := by + -- WARNING: This is a general lemma we should add! + intro u hu + right + by_cases h₁u : ⟨u, hu⟩ ∈ P + · sorry + · use 0 + use h + simp only [zpow_zero, smul_eq_mul, one_mul, eventually_true, and_true] + constructor + · + sorry + · unfold h + simp only [Finset.prod_apply] + rw [Finset.prod_ne_zero_iff] + intro p hp + apply zpow_ne_zero + rw [sub_ne_zero] + by_contra hCon + have : ⟨u, hu⟩ = p := by + exact SetCoe.ext hCon + rw [← this] at hp + tauto + + + have h₁h : MeromorphicOn h U := by sorry have h₃h : h₁h.divisor = h₁f.meromorphicOn.divisor := by sorry