Update analyticOn_zeroSet.lean
This commit is contained in:
parent
aa79fdb9eb
commit
5dc437751b
|
@ -213,14 +213,14 @@ theorem discreteZeros
|
||||||
(hU : IsPreconnected U)
|
(hU : IsPreconnected U)
|
||||||
(h₁f : AnalyticOn ℂ f U)
|
(h₁f : AnalyticOn ℂ f U)
|
||||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||||
DiscreteTopology ↑(U ∩ f⁻¹' {0}) := by
|
DiscreteTopology ((U.restrict f)⁻¹' {0}) := by
|
||||||
|
|
||||||
simp_rw [← singletons_open_iff_discrete]
|
simp_rw [← singletons_open_iff_discrete]
|
||||||
simp_rw [Metric.isOpen_singleton_iff]
|
simp_rw [Metric.isOpen_singleton_iff]
|
||||||
|
|
||||||
intro z
|
intro z
|
||||||
|
|
||||||
let A := XX hU h₁f h₂f z.2.1
|
let A := XX hU h₁f h₂f z.1.2
|
||||||
rw [eq_comm] at A
|
rw [eq_comm] at A
|
||||||
rw [AnalyticAt.order_eq_nat_iff] at A
|
rw [AnalyticAt.order_eq_nat_iff] at A
|
||||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := A
|
obtain ⟨g, h₁g, h₂g, h₃g⟩ := A
|
||||||
|
@ -265,9 +265,9 @@ theorem discreteZeros
|
||||||
_ < min ε₁ ε₂ := by assumption
|
_ < min ε₁ ε₂ := by assumption
|
||||||
_ ≤ ε₁ := by exact min_le_left ε₁ ε₂
|
_ ≤ ε₁ := by exact min_le_left ε₁ ε₂
|
||||||
|
|
||||||
|
|
||||||
have F := h₂ε₂ y.1 h₂y
|
have F := h₂ε₂ y.1 h₂y
|
||||||
rw [y.2.2] at F
|
have : f y = 0 := by exact y.2
|
||||||
|
rw [this] at F
|
||||||
simp at F
|
simp at F
|
||||||
|
|
||||||
have : g y.1 ≠ 0 := by
|
have : g y.1 ≠ 0 := by
|
||||||
|
@ -285,7 +285,7 @@ theorem finiteZeros
|
||||||
(h₂U : IsCompact U)
|
(h₂U : IsCompact U)
|
||||||
(h₁f : AnalyticOn ℂ f U)
|
(h₁f : AnalyticOn ℂ f U)
|
||||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||||
Set.Finite ↑(U ∩ f⁻¹' {0}) := by
|
Set.Finite ((U.restrict f)⁻¹' {0}) := by
|
||||||
|
|
||||||
have hinter : IsCompact ↑(U ∩ f⁻¹' {0}) := by
|
have hinter : IsCompact ↑(U ∩ f⁻¹' {0}) := by
|
||||||
apply IsCompact.of_isClosed_subset h₂U
|
apply IsCompact.of_isClosed_subset h₂U
|
||||||
|
|
Loading…
Reference in New Issue