diff --git a/Nevanlinna/analyticOn_zeroSet.lean b/Nevanlinna/analyticOn_zeroSet.lean index 95d38d8..8295200 100644 --- a/Nevanlinna/analyticOn_zeroSet.lean +++ b/Nevanlinna/analyticOn_zeroSet.lean @@ -213,14 +213,14 @@ theorem discreteZeros (hU : IsPreconnected U) (h₁f : AnalyticOn ℂ f U) (h₂f : ∃ u ∈ U, f u ≠ 0) : - DiscreteTopology ↑(U ∩ f⁻¹' {0}) := by + DiscreteTopology ((U.restrict f)⁻¹' {0}) := by simp_rw [← singletons_open_iff_discrete] simp_rw [Metric.isOpen_singleton_iff] intro z - let A := XX hU h₁f h₂f z.2.1 + let A := XX hU h₁f h₂f z.1.2 rw [eq_comm] at A rw [AnalyticAt.order_eq_nat_iff] at A obtain ⟨g, h₁g, h₂g, h₃g⟩ := A @@ -265,9 +265,9 @@ theorem discreteZeros _ < min ε₁ ε₂ := by assumption _ ≤ ε₁ := by exact min_le_left ε₁ ε₂ - have F := h₂ε₂ y.1 h₂y - rw [y.2.2] at F + have : f y = 0 := by exact y.2 + rw [this] at F simp at F have : g y.1 ≠ 0 := by @@ -285,7 +285,7 @@ theorem finiteZeros (h₂U : IsCompact U) (h₁f : AnalyticOn ℂ f U) (h₂f : ∃ u ∈ U, f u ≠ 0) : - Set.Finite ↑(U ∩ f⁻¹' {0}) := by + Set.Finite ((U.restrict f)⁻¹' {0}) := by have hinter : IsCompact ↑(U ∩ f⁻¹' {0}) := by apply IsCompact.of_isClosed_subset h₂U