Update analyticOn_zeroSet.lean

This commit is contained in:
Stefan Kebekus
2024-09-10 11:06:00 +02:00
parent aa79fdb9eb
commit 5dc437751b

View File

@@ -213,14 +213,14 @@ theorem discreteZeros
(hU : IsPreconnected U)
(h₁f : AnalyticOn f U)
(h₂f : u U, f u 0) :
DiscreteTopology (U f⁻¹' {0}) := by
DiscreteTopology ((U.restrict f)⁻¹' {0}) := by
simp_rw [ singletons_open_iff_discrete]
simp_rw [Metric.isOpen_singleton_iff]
intro z
let A := XX hU h₁f h₂f z.2.1
let A := XX hU h₁f h₂f z.1.2
rw [eq_comm] at A
rw [AnalyticAt.order_eq_nat_iff] at A
obtain g, h₁g, h₂g, h₃g := A
@@ -265,9 +265,9 @@ theorem discreteZeros
_ < min ε₁ ε₂ := by assumption
_ ε₁ := by exact min_le_left ε₁ ε₂
have F := h₂ε₂ y.1 h₂y
rw [y.2.2] at F
have : f y = 0 := by exact y.2
rw [this] at F
simp at F
have : g y.1 0 := by
@@ -285,7 +285,7 @@ theorem finiteZeros
(h₂U : IsCompact U)
(h₁f : AnalyticOn f U)
(h₂f : u U, f u 0) :
Set.Finite (U f⁻¹' {0}) := by
Set.Finite ((U.restrict f)⁻¹' {0}) := by
have hinter : IsCompact (U f⁻¹' {0}) := by
apply IsCompact.of_isClosed_subset h₂U