Working…

This commit is contained in:
Stefan Kebekus 2024-11-06 15:33:48 +01:00
parent 2146909338
commit 5cdc786144
2 changed files with 55 additions and 0 deletions

View File

@ -2,6 +2,7 @@ import Mathlib.Analysis.SpecialFunctions.Integrals
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
import Mathlib.Analysis.Convex.SpecificFunctions.Deriv import Mathlib.Analysis.Convex.SpecificFunctions.Deriv
import Nevanlinna.analyticAt import Nevanlinna.analyticAt
import Nevanlinna.mathlibAddOn
open Interval Topology open Interval Topology
open Real Filter MeasureTheory intervalIntegral open Real Filter MeasureTheory intervalIntegral
@ -20,3 +21,36 @@ instance
coe := Divisor.toFun coe := Divisor.toFun
attribute [coe] Divisor.toFun attribute [coe] Divisor.toFun
theorem Divisor.closedSupport
{U : Set }
(hU : IsClosed U)
(D : Divisor U) :
IsClosed D.toFun.support := by
rw [← isOpen_compl_iff]
rw [isOpen_iff_eventually]
intro x hx
by_cases h₁x : x ∈ U
· have A := D.locallyFiniteInU x h₁x
simp [A]
simp at hx
let B := Mnhds A hx
simpa
· rw [eventually_iff_exists_mem]
use Uᶜ
constructor
· exact IsClosed.compl_mem_nhds hU h₁x
· intro y hy
simp
exact Function.nmem_support.mp fun a => hy (D.supportInU a)
theorem Divisor.finiteSupport
{U : Set }
(hU : IsCompact U)
(D : Divisor U) :
Set.Finite D.toFun.support := by
sorry

View File

@ -1,6 +1,7 @@
import Mathlib.Analysis.Analytic.Meromorphic import Mathlib.Analysis.Analytic.Meromorphic
import Mathlib.Analysis.Calculus.ContDiff.Basic import Mathlib.Analysis.Calculus.ContDiff.Basic
import Mathlib.Analysis.Calculus.FDeriv.Add import Mathlib.Analysis.Calculus.FDeriv.Add
import Nevanlinna.analyticAt
variable {𝕜 : Type*} [NontriviallyNormedField 𝕜] variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
@ -51,3 +52,23 @@ theorem meromorphicAt_congr'
{f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜} {f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜}
(h : f =ᶠ[nhds x] g) : MeromorphicAt f x ↔ MeromorphicAt g x := (h : f =ᶠ[nhds x] g) : MeromorphicAt f x ↔ MeromorphicAt g x :=
meromorphicAt_congr (Filter.EventuallyEq.filter_mono h nhdsWithin_le_nhds) meromorphicAt_congr (Filter.EventuallyEq.filter_mono h nhdsWithin_le_nhds)
open Topology Filter
lemma Mnhds
{α : Type}
{f g : α}
{z₀ : }
(h₁ : f =ᶠ[𝓝[≠] z₀] g)
(h₂ : f z₀ = g z₀) :
f =ᶠ[𝓝 z₀] g := by
apply eventually_nhds_iff.2
obtain ⟨t, h₁t, h₂t⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₁)
use t
constructor
· intro y hy
by_cases h₂y : y ∈ ({z₀}ᶜ : Set )
· exact h₁t y hy h₂y
· simp at h₂y
rwa [h₂y]
· exact h₂t