diff --git a/Nevanlinna/divisor.lean b/Nevanlinna/divisor.lean index 72e0bff..aa3c5d4 100644 --- a/Nevanlinna/divisor.lean +++ b/Nevanlinna/divisor.lean @@ -2,6 +2,7 @@ import Mathlib.Analysis.SpecialFunctions.Integrals import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog import Mathlib.Analysis.Convex.SpecificFunctions.Deriv import Nevanlinna.analyticAt +import Nevanlinna.mathlibAddOn open Interval Topology open Real Filter MeasureTheory intervalIntegral @@ -20,3 +21,36 @@ instance coe := Divisor.toFun attribute [coe] Divisor.toFun + + +theorem Divisor.closedSupport + {U : Set ℂ} + (hU : IsClosed U) + (D : Divisor U) : + IsClosed D.toFun.support := by + + rw [← isOpen_compl_iff] + rw [isOpen_iff_eventually] + intro x hx + by_cases h₁x : x ∈ U + · have A := D.locallyFiniteInU x h₁x + simp [A] + simp at hx + let B := Mnhds A hx + simpa + · rw [eventually_iff_exists_mem] + use Uᶜ + constructor + · exact IsClosed.compl_mem_nhds hU h₁x + · intro y hy + simp + exact Function.nmem_support.mp fun a => hy (D.supportInU a) + + +theorem Divisor.finiteSupport + {U : Set ℂ} + (hU : IsCompact U) + (D : Divisor U) : + Set.Finite D.toFun.support := by + + sorry diff --git a/Nevanlinna/mathlibAddOn.lean b/Nevanlinna/mathlibAddOn.lean index 7fec19b..e5957f6 100644 --- a/Nevanlinna/mathlibAddOn.lean +++ b/Nevanlinna/mathlibAddOn.lean @@ -1,6 +1,7 @@ import Mathlib.Analysis.Analytic.Meromorphic import Mathlib.Analysis.Calculus.ContDiff.Basic import Mathlib.Analysis.Calculus.FDeriv.Add +import Nevanlinna.analyticAt variable {𝕜 : Type*} [NontriviallyNormedField 𝕜] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E] @@ -51,3 +52,23 @@ theorem meromorphicAt_congr' {f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜} (h : f =ᶠ[nhds x] g) : MeromorphicAt f x ↔ MeromorphicAt g x := meromorphicAt_congr (Filter.EventuallyEq.filter_mono h nhdsWithin_le_nhds) + +open Topology Filter + +lemma Mnhds + {α : Type} + {f g : ℂ → α} + {z₀ : ℂ} + (h₁ : f =ᶠ[𝓝[≠] z₀] g) + (h₂ : f z₀ = g z₀) : + f =ᶠ[𝓝 z₀] g := by + apply eventually_nhds_iff.2 + obtain ⟨t, h₁t, h₂t⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₁) + use t + constructor + · intro y hy + by_cases h₂y : y ∈ ({z₀}ᶜ : Set ℂ) + · exact h₁t y hy h₂y + · simp at h₂y + rwa [h₂y] + · exact h₂t