Update holomorphic.primitive.lean
This commit is contained in:
parent
decb648c24
commit
50591a54c2
|
@ -434,6 +434,47 @@ theorem primitive_fderivAtBasepoint
|
||||||
exact hasDerivAt_id z₀
|
exact hasDerivAt_id z₀
|
||||||
|
|
||||||
|
|
||||||
|
lemma integrability₁
|
||||||
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
|
(f : ℂ → E)
|
||||||
|
(hf : Differentiable ℂ f)
|
||||||
|
(a₁ a₂ b : ℝ) :
|
||||||
|
IntervalIntegrable (fun x => f { re := x, im := b }) MeasureTheory.volume a₁ a₂ := by
|
||||||
|
apply Continuous.intervalIntegrable
|
||||||
|
apply Continuous.comp
|
||||||
|
exact Differentiable.continuous hf
|
||||||
|
have : ((fun x => { re := x, im := b }) : ℝ → ℂ) = (fun x => Complex.ofRealCLM x + { re := 0, im := b }) := by
|
||||||
|
funext x
|
||||||
|
apply Complex.ext
|
||||||
|
rw [Complex.add_re]
|
||||||
|
simp
|
||||||
|
rw [Complex.add_im]
|
||||||
|
simp
|
||||||
|
rw [this]
|
||||||
|
continuity
|
||||||
|
|
||||||
|
|
||||||
|
lemma integrability₂
|
||||||
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
|
(f : ℂ → E)
|
||||||
|
(hf : Differentiable ℂ f)
|
||||||
|
(a₁ a₂ b : ℝ) :
|
||||||
|
IntervalIntegrable (fun x => f { re := b, im := x }) MeasureTheory.volume a₁ a₂ := by
|
||||||
|
apply Continuous.intervalIntegrable
|
||||||
|
apply Continuous.comp
|
||||||
|
exact Differentiable.continuous hf
|
||||||
|
have : ((fun x => { re := b, im := x }) : ℝ → ℂ) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by
|
||||||
|
funext x
|
||||||
|
apply Complex.ext
|
||||||
|
rw [Complex.add_re]
|
||||||
|
simp
|
||||||
|
simp
|
||||||
|
rw [this]
|
||||||
|
apply Continuous.add
|
||||||
|
continuity
|
||||||
|
fun_prop
|
||||||
|
|
||||||
|
|
||||||
theorem primitive_additivity
|
theorem primitive_additivity
|
||||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
(f : ℂ → E)
|
(f : ℂ → E)
|
||||||
|
@ -444,29 +485,15 @@ theorem primitive_additivity
|
||||||
unfold primitive
|
unfold primitive
|
||||||
|
|
||||||
have : (∫ (x : ℝ) in z₀.re..z.re, f { re := x, im := z₀.im }) = (∫ (x : ℝ) in z₀.re..z₁.re, f { re := x, im := z₀.im }) + (∫ (x : ℝ) in z₁.re..z.re, f { re := x, im := z₀.im }) := by
|
have : (∫ (x : ℝ) in z₀.re..z.re, f { re := x, im := z₀.im }) = (∫ (x : ℝ) in z₀.re..z₁.re, f { re := x, im := z₀.im }) + (∫ (x : ℝ) in z₁.re..z.re, f { re := x, im := z₀.im }) := by
|
||||||
rw [intervalIntegral.integral_add_adjacent_intervals]
|
rw [intervalIntegral.integral_add_adjacent_intervals]
|
||||||
apply Continuous.intervalIntegrable
|
apply integrability₁ f hf
|
||||||
apply Continuous.comp
|
apply integrability₁ f hf
|
||||||
exact Differentiable.continuous hf
|
|
||||||
sorry
|
|
||||||
--
|
|
||||||
apply Continuous.intervalIntegrable
|
|
||||||
apply Continuous.comp
|
|
||||||
exact Differentiable.continuous hf
|
|
||||||
sorry
|
|
||||||
rw [this]
|
rw [this]
|
||||||
|
|
||||||
have : (∫ (x : ℝ) in z₀.im..z.im, f { re := z.re, im := x }) = (∫ (x : ℝ) in z₀.im..z₁.im, f { re := z.re, im := x }) + (∫ (x : ℝ) in z₁.im..z.im, f { re := z.re, im := x }) := by
|
have : (∫ (x : ℝ) in z₀.im..z.im, f { re := z.re, im := x }) = (∫ (x : ℝ) in z₀.im..z₁.im, f { re := z.re, im := x }) + (∫ (x : ℝ) in z₁.im..z.im, f { re := z.re, im := x }) := by
|
||||||
rw [intervalIntegral.integral_add_adjacent_intervals]
|
rw [intervalIntegral.integral_add_adjacent_intervals]
|
||||||
apply Continuous.intervalIntegrable
|
apply integrability₂ f hf
|
||||||
apply Continuous.comp
|
apply integrability₂ f hf
|
||||||
exact Differentiable.continuous hf
|
|
||||||
sorry
|
|
||||||
--
|
|
||||||
apply Continuous.intervalIntegrable
|
|
||||||
apply Continuous.comp
|
|
||||||
exact Differentiable.continuous hf
|
|
||||||
sorry
|
|
||||||
rw [this]
|
rw [this]
|
||||||
simp
|
simp
|
||||||
|
|
||||||
|
@ -478,3 +505,17 @@ theorem primitive_additivity
|
||||||
rw [this]
|
rw [this]
|
||||||
rw [A]
|
rw [A]
|
||||||
abel
|
abel
|
||||||
|
|
||||||
|
|
||||||
|
theorem primitive_fderiv
|
||||||
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
|
{z₀ z : ℂ}
|
||||||
|
(f : ℂ → E)
|
||||||
|
(hf : Differentiable ℂ f) :
|
||||||
|
HasDerivAt (primitive z₀ f) (f z) z := by
|
||||||
|
rw [primitive_additivity f hf z₀ z]
|
||||||
|
rw [← add_zero (f z)]
|
||||||
|
apply HasDerivAt.add
|
||||||
|
apply primitive_fderivAtBasepoint
|
||||||
|
exact hf.continuous
|
||||||
|
apply hasDerivAt_const
|
||||||
|
|
Loading…
Reference in New Issue