working…
This commit is contained in:
parent
75ce3b31ef
commit
4642c017c7
|
@ -3,28 +3,51 @@ import Nevanlinna.holomorphic_examples
|
|||
|
||||
theorem harmonic_meanValue
|
||||
{f : ℂ → ℝ}
|
||||
(hf : ∀ z, HarmonicAt f z)
|
||||
(R : ℝ)
|
||||
(hR : R > 0) :
|
||||
(∫ (x : ℝ) in (0)..2 * Real.pi, f (circleMap 0 R x)) = 2 * Real.pi * f 0
|
||||
{z : ℂ}
|
||||
(ρ R : ℝ)
|
||||
(hR : R > 0)
|
||||
(hρ : ρ > R)
|
||||
(hf : ∀ x ∈ Metric.ball z ρ , HarmonicAt f x)
|
||||
:
|
||||
(∫ (x : ℝ) in (0)..2 * Real.pi, f (circleMap z R x)) = 2 * Real.pi * f z
|
||||
:= by
|
||||
|
||||
obtain ⟨F, h₁F, h₂F⟩ := harmonic_is_realOfHolomorphic hf
|
||||
obtain ⟨F, h₁F, h₂F⟩ := harmonic_is_realOfHolomorphic (gt_trans hρ hR) hf
|
||||
|
||||
have regF : Differentiable ℂ F := fun z ↦ HolomorphicAt.differentiableAt (h₁F z)
|
||||
have hrρ : Metric.ball z R ⊆ Metric.ball z ρ := by
|
||||
intro x hx
|
||||
exact gt_trans hρ hx
|
||||
|
||||
have : (∮ (z : ℂ) in C(0, R), z⁻¹ • F z) = (2 * ↑Real.pi * Complex.I) • F 0 := by
|
||||
have reg₀F : DifferentiableOn ℂ F (Metric.ball z ρ) := by
|
||||
intro x hx
|
||||
apply DifferentiableAt.differentiableWithinAt
|
||||
apply HolomorphicAt.differentiableAt (h₁F x _)
|
||||
exact hx
|
||||
|
||||
have reg₁F : DifferentiableOn ℂ F (Metric.ball z R) := by
|
||||
intro x hx
|
||||
apply DifferentiableAt.differentiableWithinAt
|
||||
apply HolomorphicAt.differentiableAt (h₁F x _)
|
||||
exact hrρ hx
|
||||
|
||||
have : (∮ (x : ℂ) in C(z, R), (x - z)⁻¹ • F x) = (2 * ↑Real.pi * Complex.I) • F z := by
|
||||
let s : Set ℂ := ∅
|
||||
let hs : s.Countable := Set.countable_empty
|
||||
let _ : ℂ := 0
|
||||
let hw : (0 : ℂ) ∈ Metric.ball 0 R := Metric.mem_ball_self hR
|
||||
let hc : ContinuousOn F (Metric.closedBall 0 R) := by
|
||||
apply Continuous.continuousOn
|
||||
exact regF.continuous
|
||||
let hd : ∀ x ∈ Metric.ball 0 R \ s, DifferentiableAt ℂ F x := by
|
||||
intro x _
|
||||
exact regF x
|
||||
|
||||
have hw : (z : ℂ) ∈ Metric.ball z R := Metric.mem_ball_self hR
|
||||
have hc : ContinuousOn F (Metric.closedBall z R) := by
|
||||
apply reg₀F.continuousOn.mono
|
||||
intro x hx
|
||||
simp at hx
|
||||
simp
|
||||
linarith
|
||||
have hd : ∀ x ∈ Metric.ball z R \ s, DifferentiableAt ℂ F x := by
|
||||
intro x hx
|
||||
let A := reg₁F x hx.1
|
||||
apply A.differentiableAt
|
||||
apply (IsOpen.mem_nhds_iff ?hs).mpr
|
||||
exact hx.1
|
||||
exact Metric.isOpen_ball
|
||||
let CIF := Complex.circleIntegral_sub_inv_smul_of_differentiable_on_off_countable hs hw hc hd
|
||||
simp at CIF
|
||||
assumption
|
||||
|
@ -32,7 +55,7 @@ theorem harmonic_meanValue
|
|||
unfold circleIntegral at this
|
||||
simp_rw [deriv_circleMap] at this
|
||||
|
||||
have t₁ {θ : ℝ} : (circleMap 0 R θ * Complex.I) • (circleMap 0 R θ)⁻¹ • F (circleMap 0 R θ) = Complex.I • F (circleMap 0 R θ) := by
|
||||
have t₁ {θ : ℝ} : (circleMap 0 R θ * Complex.I) • (circleMap 0 R θ)⁻¹ • F (circleMap z R θ) = Complex.I • F (circleMap z R θ) := by
|
||||
rw [← smul_assoc]
|
||||
congr 1
|
||||
simp
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import Nevanlinna.complexHarmonic
|
||||
import Nevanlinna.holomorphicAt
|
||||
import Nevanlinna.holomorphic_primitive2
|
||||
import Nevanlinna.holomorphic_primitive
|
||||
import Nevanlinna.mathlibAddOn
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue