Update stronglyMeromorphic_JensenFormula.lean
This commit is contained in:
parent
7fa50d47e9
commit
4320db0533
@ -29,34 +29,56 @@ theorem jensen_case_R_eq_one
|
|||||||
have h'₂f : ∃ u : (Metric.closedBall (0 : ℂ) 1), f u ≠ 0 := by
|
have h'₂f : ∃ u : (Metric.closedBall (0 : ℂ) 1), f u ≠ 0 := by
|
||||||
use ⟨0, Metric.mem_closedBall_self (by simp)⟩
|
use ⟨0, Metric.mem_closedBall_self (by simp)⟩
|
||||||
|
|
||||||
|
have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by
|
||||||
|
exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
|
||||||
|
|
||||||
|
have h₄f: Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (‖s‖⁻¹)) ⊆ h₃f.toFinset := by
|
||||||
|
intro x
|
||||||
|
contrapose
|
||||||
|
simp
|
||||||
|
intro hx
|
||||||
|
rw [hx]
|
||||||
|
simp
|
||||||
|
rw [finsum_eq_sum_of_support_subset _ h₄f]
|
||||||
|
|
||||||
obtain ⟨F, h₁F, h₂F, h₃F, h₄F⟩ := MeromorphicOn.decompose₃' h₂U h₁U h₁f h'₂f
|
obtain ⟨F, h₁F, h₂F, h₃F, h₄F⟩ := MeromorphicOn.decompose₃' h₂U h₁U h₁f h'₂f
|
||||||
|
|
||||||
let G := fun z ↦ log ‖F z‖ + ∑ s ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order s).toNat * log ‖z - s‖
|
have h₁F : Function.mulSupport (fun u ↦ fun z => (z - u) ^ (h₁f.meromorphicOn.divisor u)) ⊆ h₃f.toFinset := by
|
||||||
|
intro u
|
||||||
|
contrapose
|
||||||
|
simp
|
||||||
|
intro hu
|
||||||
|
rw [hu]
|
||||||
|
simp
|
||||||
|
exact rfl
|
||||||
|
rw [finprod_eq_prod_of_mulSupport_subset _ h₁F] at h₄F
|
||||||
|
|
||||||
|
let G := fun z ↦ log ‖F z‖ + ∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log ‖z - s‖
|
||||||
|
|
||||||
|
have h₁G {z : ℂ} : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log ‖z - s‖) ⊆ h₃f.toFinset := by
|
||||||
|
intro s
|
||||||
|
contrapose
|
||||||
|
simp
|
||||||
|
intro hs
|
||||||
|
rw [hs]
|
||||||
|
simp
|
||||||
|
|
||||||
have decompose_f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → log ‖f z‖ = G z := by
|
have decompose_f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → log ‖f z‖ = G z := by
|
||||||
intro z h₁z h₂z
|
intro z h₁z h₂z
|
||||||
|
|
||||||
conv =>
|
rw [h₄F]
|
||||||
left
|
simp only [Pi.mul_apply, norm_mul]
|
||||||
arg 1
|
simp only [Finset.prod_apply, norm_prod, norm_zpow]
|
||||||
rw [h₃F]
|
|
||||||
rw [smul_eq_mul]
|
|
||||||
rw [norm_mul]
|
|
||||||
rw [norm_prod]
|
|
||||||
left
|
|
||||||
arg 2
|
|
||||||
intro b
|
|
||||||
rw [norm_pow]
|
|
||||||
simp only [Complex.norm_eq_abs, Finset.univ_eq_attach]
|
|
||||||
rw [Real.log_mul]
|
rw [Real.log_mul]
|
||||||
rw [Real.log_prod]
|
rw [Real.log_prod]
|
||||||
conv =>
|
simp_rw [Real.log_zpow]
|
||||||
left
|
dsimp only [G]
|
||||||
left
|
rw [finsum_eq_sum_of_support_subset _ h₁G]
|
||||||
arg 2
|
--
|
||||||
intro s
|
intro x hx
|
||||||
rw [Real.log_pow]
|
simp at hx
|
||||||
dsimp [G]
|
|
||||||
|
|
||||||
abel
|
abel
|
||||||
|
|
||||||
-- ∀ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0
|
-- ∀ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0
|
||||||
|
Loading…
Reference in New Issue
Block a user