diff --git a/Nevanlinna/stronglyMeromorphic_JensenFormula.lean b/Nevanlinna/stronglyMeromorphic_JensenFormula.lean index 4b0fded..803b68f 100644 --- a/Nevanlinna/stronglyMeromorphic_JensenFormula.lean +++ b/Nevanlinna/stronglyMeromorphic_JensenFormula.lean @@ -29,34 +29,56 @@ theorem jensen_case_R_eq_one have h'₂f : ∃ u : (Metric.closedBall (0 : ℂ) 1), f u ≠ 0 := by use ⟨0, Metric.mem_closedBall_self (by simp)⟩ + have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by + exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor + + have h₄f: Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (‖s‖⁻¹)) ⊆ h₃f.toFinset := by + intro x + contrapose + simp + intro hx + rw [hx] + simp + rw [finsum_eq_sum_of_support_subset _ h₄f] + obtain ⟨F, h₁F, h₂F, h₃F, h₄F⟩ := MeromorphicOn.decompose₃' h₂U h₁U h₁f h'₂f - let G := fun z ↦ log ‖F z‖ + ∑ s ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order s).toNat * log ‖z - s‖ + have h₁F : Function.mulSupport (fun u ↦ fun z => (z - u) ^ (h₁f.meromorphicOn.divisor u)) ⊆ h₃f.toFinset := by + intro u + contrapose + simp + intro hu + rw [hu] + simp + exact rfl + rw [finprod_eq_prod_of_mulSupport_subset _ h₁F] at h₄F + + let G := fun z ↦ log ‖F z‖ + ∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log ‖z - s‖ + + have h₁G {z : ℂ} : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log ‖z - s‖) ⊆ h₃f.toFinset := by + intro s + contrapose + simp + intro hs + rw [hs] + simp have decompose_f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → log ‖f z‖ = G z := by intro z h₁z h₂z - conv => - left - arg 1 - rw [h₃F] - rw [smul_eq_mul] - rw [norm_mul] - rw [norm_prod] - left - arg 2 - intro b - rw [norm_pow] - simp only [Complex.norm_eq_abs, Finset.univ_eq_attach] + rw [h₄F] + simp only [Pi.mul_apply, norm_mul] + simp only [Finset.prod_apply, norm_prod, norm_zpow] rw [Real.log_mul] rw [Real.log_prod] - conv => - left - left - arg 2 - intro s - rw [Real.log_pow] - dsimp [G] + simp_rw [Real.log_zpow] + dsimp only [G] + rw [finsum_eq_sum_of_support_subset _ h₁G] + -- + intro x hx + simp at hx + + abel -- ∀ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0