Update stronglyMeromorphic_JensenFormula.lean
This commit is contained in:
		| @@ -29,34 +29,56 @@ theorem jensen_case_R_eq_one | ||||
|   have h'₂f : ∃ u : (Metric.closedBall (0 : ℂ) 1), f u ≠ 0 := by | ||||
|     use ⟨0, Metric.mem_closedBall_self (by simp)⟩ | ||||
|  | ||||
|   have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by | ||||
|     exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor | ||||
|  | ||||
|   have h₄f: Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (‖s‖⁻¹)) ⊆ h₃f.toFinset := by | ||||
|     intro x | ||||
|     contrapose | ||||
|     simp | ||||
|     intro hx | ||||
|     rw [hx] | ||||
|     simp | ||||
|   rw [finsum_eq_sum_of_support_subset _ h₄f] | ||||
|  | ||||
|   obtain ⟨F, h₁F, h₂F, h₃F, h₄F⟩ := MeromorphicOn.decompose₃' h₂U h₁U h₁f h'₂f | ||||
|  | ||||
|   let G := fun z ↦ log ‖F z‖ + ∑ s ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order s).toNat * log ‖z - s‖ | ||||
|   have h₁F : Function.mulSupport (fun u ↦ fun z => (z - u) ^ (h₁f.meromorphicOn.divisor u)) ⊆ h₃f.toFinset := by | ||||
|     intro u | ||||
|     contrapose | ||||
|     simp | ||||
|     intro hu | ||||
|     rw [hu] | ||||
|     simp | ||||
|     exact rfl | ||||
|   rw [finprod_eq_prod_of_mulSupport_subset _ h₁F] at h₄F | ||||
|  | ||||
|   let G := fun z ↦ log ‖F z‖ + ∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log ‖z - s‖ | ||||
|  | ||||
|   have h₁G {z : ℂ} : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log ‖z - s‖) ⊆ h₃f.toFinset := by | ||||
|     intro s | ||||
|     contrapose | ||||
|     simp | ||||
|     intro hs | ||||
|     rw [hs] | ||||
|     simp | ||||
|  | ||||
|   have decompose_f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → log ‖f z‖ = G z := by | ||||
|     intro z h₁z h₂z | ||||
|  | ||||
|     conv => | ||||
|       left | ||||
|       arg 1 | ||||
|       rw [h₃F] | ||||
|       rw [smul_eq_mul] | ||||
|       rw [norm_mul] | ||||
|       rw [norm_prod] | ||||
|       left | ||||
|       arg 2 | ||||
|       intro b | ||||
|       rw [norm_pow] | ||||
|     simp only [Complex.norm_eq_abs, Finset.univ_eq_attach] | ||||
|     rw [h₄F] | ||||
|     simp only [Pi.mul_apply, norm_mul] | ||||
|     simp only [Finset.prod_apply, norm_prod, norm_zpow] | ||||
|     rw [Real.log_mul] | ||||
|     rw [Real.log_prod] | ||||
|     conv => | ||||
|       left | ||||
|       left | ||||
|       arg 2 | ||||
|       intro s | ||||
|       rw [Real.log_pow] | ||||
|     dsimp [G] | ||||
|     simp_rw [Real.log_zpow] | ||||
|     dsimp only [G] | ||||
|     rw [finsum_eq_sum_of_support_subset _ h₁G] | ||||
|     -- | ||||
|     intro x hx | ||||
|     simp at hx | ||||
|  | ||||
|  | ||||
|     abel | ||||
|  | ||||
|     -- ∀ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0 | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus