Update firstMain.lean
This commit is contained in:
parent
9068ad406e
commit
3b2d1434f7
@ -11,28 +11,49 @@ noncomputable def MeromorphicOn.N_zero
|
|||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
(h₁f : MeromorphicOn f ⊤) :
|
(h₁f : MeromorphicOn f ⊤) :
|
||||||
ℝ → ℝ :=
|
ℝ → ℝ :=
|
||||||
fun r ↦ ∑ᶠ z ∈ Metric.ball (0 : ℂ) r, (max 0 (h₁f.divisor z)) * log (r * ‖z‖⁻¹)
|
fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ℂ) r, (max 0 (h₁f.divisor z)) * log (r * ‖z‖⁻¹)
|
||||||
|
|
||||||
noncomputable def MeromorphicOn.N_infty
|
noncomputable def MeromorphicOn.N_infty
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
(h₁f : MeromorphicOn f ⊤) :
|
(h₁f : MeromorphicOn f ⊤) :
|
||||||
ℝ → ℝ :=
|
ℝ → ℝ :=
|
||||||
fun r ↦ ∑ᶠ z ∈ Metric.ball (0 : ℂ) r, (max 0 (-(h₁f.divisor z))) * log (r * ‖z‖⁻¹)
|
fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ℂ) r, (max 0 (-(h₁f.divisor z))) * log (r * ‖z‖⁻¹)
|
||||||
|
|
||||||
theorem Nevanlinna_counting
|
theorem Nevanlinna_counting
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
(h₁f : MeromorphicOn f ⊤) :
|
(h₁f : MeromorphicOn f ⊤) :
|
||||||
h₁f.N_zero - h₁f.N_infty = fun r ↦ ∑ᶠ z ∈ Metric.ball (0 : ℂ) r, (h₁f.divisor z) * log (r * ‖z‖⁻¹) := by
|
h₁f.N_zero - h₁f.N_infty = fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ℂ) r, (h₁f.divisor z) * log (r * ‖z‖⁻¹) := by
|
||||||
|
|
||||||
|
funext r
|
||||||
|
simp only [Pi.sub_apply]
|
||||||
|
|
||||||
|
rw [finsum_eq_sum]
|
||||||
|
sorry
|
||||||
|
|
||||||
|
have h₁fr : MeromorphicOn f (Metric.ball (0 : ℂ) r) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
let Sr :=
|
||||||
|
|
||||||
|
rw [finsum_eq_sum_of_support_subset _ h₄f]
|
||||||
|
|
||||||
|
|
||||||
|
have h₂U : IsCompact (Metric.closedBall (0 : ℂ) R) :=
|
||||||
|
isCompact_closedBall 0 R
|
||||||
|
|
||||||
|
have h'₂f : ∃ u : (Metric.closedBall (0 : ℂ) R), f u ≠ 0 := by
|
||||||
|
use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩
|
||||||
|
|
||||||
|
have h₃f : Set.Finite (Function.support h₁f.divisor) := by
|
||||||
|
exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
--
|
--
|
||||||
|
|
||||||
noncomputable def logpos : ℝ → ℝ :=
|
noncomputable def logpos : ℝ → ℝ := fun r ↦ max 0 (log r)
|
||||||
fun r ↦ max 0 (log r)
|
|
||||||
|
|
||||||
theorem loglogpos
|
theorem loglogpos {r : ℝ} : log r = logpos r - logpos r⁻¹ := by
|
||||||
{r : ℝ} :
|
|
||||||
log r = logpos r - logpos r⁻¹ := by
|
|
||||||
unfold logpos
|
unfold logpos
|
||||||
rw [log_inv]
|
rw [log_inv]
|
||||||
by_cases h : 0 ≤ log r
|
by_cases h : 0 ≤ log r
|
||||||
|
Loading…
Reference in New Issue
Block a user