From 3b2d1434f78100ab086fd716e6de91a17b01452b Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Mon, 9 Dec 2024 16:00:26 +0100 Subject: [PATCH] Update firstMain.lean --- Nevanlinna/firstMain.lean | 37 +++++++++++++++++++++++++++++-------- 1 file changed, 29 insertions(+), 8 deletions(-) diff --git a/Nevanlinna/firstMain.lean b/Nevanlinna/firstMain.lean index 1fd5127..ae14553 100644 --- a/Nevanlinna/firstMain.lean +++ b/Nevanlinna/firstMain.lean @@ -11,28 +11,49 @@ noncomputable def MeromorphicOn.N_zero {f : ℂ → ℂ} (h₁f : MeromorphicOn f ⊤) : ℝ → ℝ := - fun r ↦ ∑ᶠ z ∈ Metric.ball (0 : ℂ) r, (max 0 (h₁f.divisor z)) * log (r * ‖z‖⁻¹) + fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ℂ) r, (max 0 (h₁f.divisor z)) * log (r * ‖z‖⁻¹) noncomputable def MeromorphicOn.N_infty {f : ℂ → ℂ} (h₁f : MeromorphicOn f ⊤) : ℝ → ℝ := - fun r ↦ ∑ᶠ z ∈ Metric.ball (0 : ℂ) r, (max 0 (-(h₁f.divisor z))) * log (r * ‖z‖⁻¹) + fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ℂ) r, (max 0 (-(h₁f.divisor z))) * log (r * ‖z‖⁻¹) theorem Nevanlinna_counting {f : ℂ → ℂ} (h₁f : MeromorphicOn f ⊤) : - h₁f.N_zero - h₁f.N_infty = fun r ↦ ∑ᶠ z ∈ Metric.ball (0 : ℂ) r, (h₁f.divisor z) * log (r * ‖z‖⁻¹) := by + h₁f.N_zero - h₁f.N_infty = fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ℂ) r, (h₁f.divisor z) * log (r * ‖z‖⁻¹) := by + + funext r + simp only [Pi.sub_apply] + + rw [finsum_eq_sum] + sorry + + have h₁fr : MeromorphicOn f (Metric.ball (0 : ℂ) r) := by + sorry + + let Sr := + + rw [finsum_eq_sum_of_support_subset _ h₄f] + + + have h₂U : IsCompact (Metric.closedBall (0 : ℂ) R) := + isCompact_closedBall 0 R + + have h'₂f : ∃ u : (Metric.closedBall (0 : ℂ) R), f u ≠ 0 := by + use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩ + + have h₃f : Set.Finite (Function.support h₁f.divisor) := by + exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor + sorry -- -noncomputable def logpos : ℝ → ℝ := - fun r ↦ max 0 (log r) +noncomputable def logpos : ℝ → ℝ := fun r ↦ max 0 (log r) -theorem loglogpos - {r : ℝ} : - log r = logpos r - logpos r⁻¹ := by +theorem loglogpos {r : ℝ} : log r = logpos r - logpos r⁻¹ := by unfold logpos rw [log_inv] by_cases h : 0 ≤ log r