Update cauchyRiemann.lean
This commit is contained in:
parent
77d1fd2ae4
commit
38eaf677f9
@ -1,15 +1,15 @@
|
||||
import Mathlib.Analysis.Calculus.Conformal.NormedSpace
|
||||
import Mathlib.Analysis.Calculus.ContDiff.Basic
|
||||
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||
import Mathlib.Analysis.Calculus.Deriv.Linear
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Comp
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Linear
|
||||
import Mathlib.Analysis.Calculus.FDeriv.RestrictScalars
|
||||
--import Mathlib.Analysis.Calculus.Conformal.NormedSpace
|
||||
--import Mathlib.Analysis.Calculus.ContDiff.Basic
|
||||
--import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||
--import Mathlib.Analysis.Calculus.Deriv.Linear
|
||||
--import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||
--import Mathlib.Analysis.Calculus.FDeriv.Comp
|
||||
--import Mathlib.Analysis.Calculus.FDeriv.Linear
|
||||
--import Mathlib.Analysis.Calculus.FDeriv.RestrictScalars
|
||||
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||
import Mathlib.Analysis.Complex.Basic
|
||||
import Mathlib.Analysis.Complex.CauchyIntegral
|
||||
import Mathlib.Analysis.Complex.Conformal
|
||||
--import Mathlib.Analysis.Complex.Basic
|
||||
--import Mathlib.Analysis.Complex.CauchyIntegral
|
||||
--import Mathlib.Analysis.Complex.Conformal
|
||||
import Mathlib.Analysis.Complex.RealDeriv
|
||||
|
||||
variable {z : ℂ} {f : ℂ → ℂ}
|
||||
@ -26,12 +26,9 @@ theorem CauchyRiemann₁ : (DifferentiableAt ℂ f z)
|
||||
have t₂a : Complex.I * (AR 1) = Complex.I • (AR 1) := by
|
||||
exact rfl
|
||||
rw [← t₂a] at t₂
|
||||
have t₂b : Complex.I • 1 = Complex.I := by
|
||||
simp
|
||||
have t₂c : AR Complex.I = Complex.I • (AR 1) := by
|
||||
simp at t₂
|
||||
exact t₂
|
||||
let C : HasFDerivAt f (ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z)) z := h.hasFDerivAt.restrictScalars ℝ
|
||||
have t₃ : fderiv ℝ f z = ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z) := by
|
||||
exact DifferentiableAt.fderiv_restrictScalars ℝ h
|
||||
rw [t₃]
|
||||
@ -54,72 +51,78 @@ theorem CauchyRiemann₂ : (DifferentiableAt ℂ f z)
|
||||
exact CauchyRiemann₁ h
|
||||
|
||||
theorem CauchyRiemann₃ : (DifferentiableAt ℂ f z)
|
||||
→ lineDeriv ℝ (Complex.reCLM ∘ f) z 1 = lineDeriv ℝ (Complex.imCLM ∘ f) z Complex.I := by
|
||||
→ (lineDeriv ℝ (Complex.reCLM ∘ f) z 1 = lineDeriv ℝ (Complex.imCLM ∘ f) z Complex.I)
|
||||
∧ (lineDeriv ℝ (Complex.reCLM ∘ f) z Complex.I = -lineDeriv ℝ (Complex.imCLM ∘ f) z 1)
|
||||
:= by
|
||||
|
||||
-- Proof starts here
|
||||
intro h
|
||||
|
||||
have t₀₀ : DifferentiableAt ℝ f z := by
|
||||
exact h.restrictScalars ℝ
|
||||
|
||||
have t₀₁ : DifferentiableAt ℝ Complex.reCLM (f z) := by
|
||||
have : ∀ w, DifferentiableAt ℝ Complex.reCLM w := by
|
||||
intro w
|
||||
refine Differentiable.differentiableAt ?h
|
||||
exact ContinuousLinearMap.differentiable (Complex.reCLM : ℂ →L[ℝ] ℝ)
|
||||
exact this (f z)
|
||||
|
||||
have t₁ : DifferentiableAt ℝ (Complex.reCLM ∘ f) z := by
|
||||
apply t₀₁.comp
|
||||
exact t₀₀
|
||||
|
||||
have t₂ : lineDeriv ℝ (Complex.reCLM ∘ f) z 1 = (fderiv ℝ (Complex.reCLM ∘ f) z) 1 := by
|
||||
apply DifferentiableAt.lineDeriv_eq_fderiv
|
||||
exact t₁
|
||||
rw [t₂]
|
||||
|
||||
have s₀₀ : DifferentiableAt ℝ f z := by
|
||||
exact h.restrictScalars ℝ
|
||||
|
||||
have s₀₁ : DifferentiableAt ℝ Complex.imCLM (f z) := by
|
||||
have : ∀ w, DifferentiableAt ℝ Complex.imCLM w := by
|
||||
intro w
|
||||
apply Differentiable.differentiableAt
|
||||
exact ContinuousLinearMap.differentiable (Complex.imCLM : ℂ →L[ℝ] ℝ)
|
||||
exact this (f z)
|
||||
|
||||
have s₁ : DifferentiableAt ℝ (Complex.im ∘ f) z := by
|
||||
apply s₀₁.comp
|
||||
exact s₀₀
|
||||
|
||||
have s₂ : lineDeriv ℝ (Complex.imCLM ∘ f) z Complex.I = (fderiv ℝ (Complex.imCLM ∘ f) z) Complex.I := by
|
||||
apply DifferentiableAt.lineDeriv_eq_fderiv
|
||||
exact s₁
|
||||
rw [s₂]
|
||||
|
||||
rw [fderiv.comp, fderiv.comp]
|
||||
simp
|
||||
rw [CauchyRiemann₁ h]
|
||||
constructor
|
||||
· rw [t₂, s₂]
|
||||
rw [fderiv.comp, fderiv.comp]
|
||||
simp
|
||||
rw [CauchyRiemann₁ h]
|
||||
rw [Complex.I_mul]
|
||||
-- DifferentiableAt ℝ Complex.im (f z)
|
||||
exact Complex.imCLM.differentiableAt
|
||||
|
||||
have u₁ : ∀ w, fderiv ℝ Complex.reCLM w = Complex.reCLM := by
|
||||
exact fun w => ContinuousLinearMap.fderiv Complex.reCLM
|
||||
-- DifferentiableAt ℝ f z
|
||||
exact t₀₀
|
||||
|
||||
--rw [u₁ (f z)]
|
||||
have u₂ : ∀ w, fderiv ℝ Complex.imCLM w = Complex.imCLM := by
|
||||
exact fun w => ContinuousLinearMap.fderiv Complex.imCLM
|
||||
-- rw [u₂ (f z)]
|
||||
rw [Complex.I_mul]
|
||||
-- DifferentiableAt ℝ Complex.re (f z)
|
||||
exact Complex.reCLM.differentiableAt
|
||||
|
||||
-- DifferentiableAt ℝ f z
|
||||
exact t₀₀
|
||||
· have r₂ : lineDeriv ℝ (Complex.reCLM ∘ f) z Complex.I = (fderiv ℝ (Complex.reCLM ∘ f) z) Complex.I := by
|
||||
apply DifferentiableAt.lineDeriv_eq_fderiv
|
||||
exact t₁
|
||||
have p₂ : lineDeriv ℝ (Complex.imCLM ∘ f) z 1 = (fderiv ℝ (Complex.imCLM ∘ f) z) 1 := by
|
||||
apply DifferentiableAt.lineDeriv_eq_fderiv
|
||||
exact s₁
|
||||
rw [r₂, p₂]
|
||||
rw [fderiv.comp, fderiv.comp]
|
||||
simp
|
||||
rw [CauchyRiemann₁ h]
|
||||
rw [Complex.I_mul]
|
||||
-- DifferentiableAt ℝ Complex.im (f z)
|
||||
exact Complex.imCLM.differentiableAt
|
||||
|
||||
-- DifferentiableAt ℝ Complex.im (f z)
|
||||
exact Complex.imCLM.differentiableAt
|
||||
-- DifferentiableAt ℝ f z
|
||||
exact t₀₀
|
||||
|
||||
-- DifferentiableAt ℝ Complex.re (f z)
|
||||
exact Complex.reCLM.differentiableAt
|
||||
|
||||
-- DifferentiableAt ℝ f z
|
||||
exact t₀₀
|
||||
|
||||
-- DifferentiableAt ℝ Complex.re (f z)
|
||||
exact Complex.reCLM.differentiableAt
|
||||
|
||||
-- DifferentiableAt ℝ f z
|
||||
exact t₀₀
|
||||
-- DifferentiableAt ℝ f z
|
||||
exact t₀₀
|
||||
|
Loading…
Reference in New Issue
Block a user