Update specialFunctions_Integrals.lean

This commit is contained in:
Stefan Kebekus 2024-08-14 16:03:54 +02:00
parent b2de8dbc44
commit 3063415cf9

View File

@ -9,7 +9,6 @@ open Real Filter MeasureTheory intervalIntegral
-- The following theorem was suggested by Gareth Ma on Zulip
lemma logsinBound : ∀ x ∈ (Set.Icc 0 1), ‖(log ∘ sin) x‖ ≤ ‖log ((π / 2)⁻¹ * x)‖ := by
intro x hx
@ -18,8 +17,21 @@ lemma logsinBound : ∀ x ∈ (Set.Icc 0 1), ‖(log ∘ sin) x‖ ≤ ‖log ((
-- Now handle the case where x ≠ 0
have l₀ : log ((π / 2)⁻¹ * x) ≤ 0 := by
-- log_nonpos (Set.mem_Icc.1 hx).1 (Set.mem_Icc.1 hx).2
sorry
apply log_nonpos
apply mul_nonneg
apply le_of_lt
apply inv_pos.2
apply div_pos
exact pi_pos
exact zero_lt_two
apply (Set.mem_Icc.1 hx).1
simp
apply mul_le_one
rw [div_le_one pi_pos]
exact two_le_pi
exact (Set.mem_Icc.1 hx).1
exact (Set.mem_Icc.1 hx).2
have l₁ : 0 ≤ sin x := by
apply sin_nonneg_of_nonneg_of_le_pi (Set.mem_Icc.1 hx).1
trans (1 : )
@ -38,24 +50,6 @@ lemma logsinBound : ∀ x ∈ (Set.Icc 0 1), ‖(log ∘ sin) x‖ ≤ ‖log ((
simp
exact lt_of_le_of_ne (Set.mem_Icc.1 hx).1 ( fun a => h'x (id (Eq.symm a)) )
have l₄ : sin x ∈ (Set.Ioi 0) := by
have t₁ : 0 ∈ Set.Icc (-(π / 2)) (π / 2) := by
simp
apply div_nonneg pi_nonneg zero_le_two
have t₂ : x ∈ Set.Icc (-(π / 2)) (π / 2) := by
simp
constructor
· trans 0
simp
apply div_nonneg pi_nonneg zero_le_two
exact (Set.mem_Icc.1 hx).1
· trans (1 : )
exact (Set.mem_Icc.1 hx).2
exact one_le_pi_div_two
let A := Real.strictMonoOn_sin t₁ t₂ l₃
simp at A
simpa
have l₅ : 0 < (π / 2)⁻¹ * x := by
apply mul_pos
apply inv_pos.2
@ -109,7 +103,7 @@ lemma logsinBound : ∀ x ∈ (Set.Icc 0 1), ‖(log ∘ sin) x‖ ≤ ‖log ((
exact one_le_pi_div_two
example : IntervalIntegrable (log ∘ sin) volume 0 1 := by
lemma intervalIntegrable_log_sin₁ : IntervalIntegrable (log ∘ sin) volume 0 1 := by
have int_log : IntervalIntegrable (fun x ↦ ‖log x‖) volume 0 1 := by
apply IntervalIntegrable.norm
@ -191,6 +185,47 @@ example : IntervalIntegrable (log ∘ sin) volume 0 1 := by
exact measurable_log
exact measurable_const_mul (π / 2)⁻¹
lemma intervalIntegrable_log_sin₂ : IntervalIntegrable (log ∘ sin) volume 0 (π / 2) := by
apply IntervalIntegrable.trans (b := 1)
exact intervalIntegrable_log_sin₁
-- IntervalIntegrable (log ∘ sin) volume 1 (π / 2)
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp continuousOn_log continuousOn_sin
intro x hx
rw [Set.uIcc_of_le, Set.mem_Icc] at hx
have : 0 < sin x := by
apply Real.sin_pos_of_pos_of_lt_pi
· calc 0
_ < 1 := Real.zero_lt_one
_ ≤ x := hx.1
· calc x
_ ≤ π / 2 := hx.2
_ < π := div_two_lt_of_pos pi_pos
by_contra h₁x
simp at h₁x
rw [h₁x] at this
simp at this
exact one_le_pi_div_two
lemma intervalIntegrable_log_sin : IntervalIntegrable (log ∘ sin) volume 0 π := by
apply IntervalIntegrable.trans (b := π / 2)
exact intervalIntegrable_log_sin₂
let A := IntervalIntegrable.comp_sub_left intervalIntegrable_log_sin₂ π
simp at A
let B := IntervalIntegrable.symm A
have : π - π / 2 = π / 2 := by linarith
rwa [this] at B
lemma intervalIntegrable_log_cos : IntervalIntegrable (log ∘ cos) volume 0 (π / 2) := by
let A := IntervalIntegrable.comp_sub_left intervalIntegrable_log_sin₂ (π / 2)
simp only [Function.comp_apply, sub_zero, sub_self] at A
simp_rw [sin_pi_div_two_sub] at A
have : (fun x => log (cos x)) = log ∘ cos := rfl
apply IntervalIntegrable.symm
rwa [← this]
theorem logInt
{t : }
@ -248,8 +283,59 @@ theorem logInt
simp [Set.mem_uIcc, ht]
lemma int₁₁ : ∫ (x : ) in (0)..π, log (4 * sin x ^ 2) = 0 := by
lemma integral_log_sin : ∫ (x : ) in (0)..(π / 2), log (sin x) = -log 2 * π/2 := by
have t₀ {x : } : sin (2 * x) = 2 * sin x * cos x := sin_two_mul x
have t₁ {x : } : log (sin (2 * x)) = log 2 + log (sin x) + log (cos x) := by
rw [sin_two_mul x, log_mul, log_mul]
exact Ne.symm (NeZero.ne' 2)
sorry
sorry
sorry
have t₂ {x : } : log (sin x) = log (sin (2 * x)) - log 2 - log (cos x) := by
rw [t₁]
ring
conv =>
left
arg 1
intro x
rw [t₂]
rw [intervalIntegral.integral_sub, intervalIntegral.integral_sub]
rw [intervalIntegral.integral_const]
rw [intervalIntegral.integral_comp_mul_left (c := 2) (f := fun x ↦ log (sin x))]
simp
have : 2 * (π / 2) = π := by linarith
rw [this]
have : ∫ (x : ) in (0)..π, log (sin x) = 2 * ∫ (x : ) in (0)..(π / 2), log (sin x) := by
sorry
rw [this]
have : ∫ (x : ) in (0)..(π / 2), log (sin x) = ∫ (x : ) in (0)..(π / 2), log (cos x) := by
sorry
rw [← this]
simp
linarith
exact Ne.symm (NeZero.ne' 2)
-- IntervalIntegrable (fun x => log (sin (2 * x))) volume 0 (π / 2)
sorry
-- IntervalIntegrable (fun x => log 2) volume 0 (π / 2)
simp
-- IntervalIntegrable (fun x => log (sin (2 * x)) - log 2) volume 0 (π / 2)
apply IntervalIntegrable.sub
-- -- IntervalIntegrable (fun x => log (sin (2 * x))) volume 0 (π / 2)
sorry
-- -- IntervalIntegrable (fun x => log 2) volume 0 (π / 2)
simp
-- -- IntervalIntegrable (fun x => log (cos x)) volume 0 (π / 2)
exact intervalIntegrable_log_cos
lemma int₁₁ : ∫ (x : ) in (0)..π, log (4 * sin x ^ 2) = 0 := by
sorry