working
This commit is contained in:
parent
38179d24c0
commit
b2de8dbc44
@ -8,12 +8,142 @@ open Real Filter MeasureTheory intervalIntegral
|
||||
|
||||
-- The following theorem was suggested by Gareth Ma on Zulip
|
||||
|
||||
|
||||
|
||||
lemma logsinBound : ∀ x ∈ (Set.Icc 0 1), ‖(log ∘ sin) x‖ ≤ ‖log ((π / 2)⁻¹ * x)‖ := by
|
||||
|
||||
intro x hx
|
||||
by_cases h'x : x = 0
|
||||
· rw [h'x]; simp
|
||||
|
||||
-- Now handle the case where x ≠ 0
|
||||
have l₀ : log ((π / 2)⁻¹ * x) ≤ 0 := by
|
||||
-- log_nonpos (Set.mem_Icc.1 hx).1 (Set.mem_Icc.1 hx).2
|
||||
sorry
|
||||
have l₁ : 0 ≤ sin x := by
|
||||
apply sin_nonneg_of_nonneg_of_le_pi (Set.mem_Icc.1 hx).1
|
||||
trans (1 : ℝ)
|
||||
exact (Set.mem_Icc.1 hx).2
|
||||
trans π / 2
|
||||
exact one_le_pi_div_two
|
||||
norm_num [pi_nonneg]
|
||||
have l₂ : log (sin x) ≤ 0 := log_nonpos l₁ (sin_le_one x)
|
||||
|
||||
simp only [norm_eq_abs, Function.comp_apply]
|
||||
rw [abs_eq_neg_self.2 l₀]
|
||||
rw [abs_eq_neg_self.2 l₂]
|
||||
simp only [neg_le_neg_iff, ge_iff_le]
|
||||
|
||||
have l₃ : x ∈ (Set.Ioi 0) := by
|
||||
simp
|
||||
exact lt_of_le_of_ne (Set.mem_Icc.1 hx).1 ( fun a => h'x (id (Eq.symm a)) )
|
||||
|
||||
have l₄ : sin x ∈ (Set.Ioi 0) := by
|
||||
have t₁ : 0 ∈ Set.Icc (-(π / 2)) (π / 2) := by
|
||||
simp
|
||||
apply div_nonneg pi_nonneg zero_le_two
|
||||
have t₂ : x ∈ Set.Icc (-(π / 2)) (π / 2) := by
|
||||
simp
|
||||
constructor
|
||||
· trans 0
|
||||
simp
|
||||
apply div_nonneg pi_nonneg zero_le_two
|
||||
exact (Set.mem_Icc.1 hx).1
|
||||
· trans (1 : ℝ)
|
||||
exact (Set.mem_Icc.1 hx).2
|
||||
exact one_le_pi_div_two
|
||||
let A := Real.strictMonoOn_sin t₁ t₂ l₃
|
||||
simp at A
|
||||
simpa
|
||||
|
||||
have l₅ : 0 < (π / 2)⁻¹ * x := by
|
||||
apply mul_pos
|
||||
apply inv_pos.2
|
||||
apply div_pos pi_pos zero_lt_two
|
||||
exact l₃
|
||||
|
||||
have : ∀ x ∈ (Set.Icc 0 (π / 2)), (π / 2)⁻¹ * x ≤ sin x := by
|
||||
intro x hx
|
||||
|
||||
have i₀ : 0 ∈ Set.Icc 0 π :=
|
||||
Set.left_mem_Icc.mpr pi_nonneg
|
||||
have i₁ : π / 2 ∈ Set.Icc 0 π :=
|
||||
Set.mem_Icc.mpr ⟨div_nonneg pi_nonneg zero_le_two, half_le_self pi_nonneg⟩
|
||||
|
||||
have i₂ : 0 ≤ 1 - (π / 2)⁻¹ * x := by
|
||||
rw [sub_nonneg]
|
||||
calc (π / 2)⁻¹ * x
|
||||
_ ≤ (π / 2)⁻¹ * (π / 2) := by
|
||||
apply mul_le_mul_of_nonneg_left
|
||||
exact (Set.mem_Icc.1 hx).2
|
||||
apply inv_nonneg.mpr (div_nonneg pi_nonneg zero_le_two)
|
||||
_ = 1 := by
|
||||
apply inv_mul_cancel
|
||||
apply div_ne_zero_iff.mpr
|
||||
constructor
|
||||
· exact pi_ne_zero
|
||||
· exact Ne.symm (NeZero.ne' 2)
|
||||
|
||||
have i₃ : 0 ≤ (π / 2)⁻¹ * x := by
|
||||
apply mul_nonneg
|
||||
apply inv_nonneg.2
|
||||
apply div_nonneg
|
||||
exact pi_nonneg
|
||||
exact zero_le_two
|
||||
exact (Set.mem_Icc.1 hx).1
|
||||
|
||||
have i₄ : 1 - (π / 2)⁻¹ * x + (π / 2)⁻¹ * x = 1 := by ring
|
||||
|
||||
let B := strictConcaveOn_sin_Icc.concaveOn.2 i₀ i₁ i₂ i₃ i₄
|
||||
simp [Real.sin_pi_div_two] at B
|
||||
rw [(by ring_nf; rw [mul_inv_cancel pi_ne_zero, one_mul] : 2 / π * x * (π / 2) = x)] at B
|
||||
simpa
|
||||
|
||||
apply log_le_log l₅
|
||||
apply this
|
||||
apply Set.mem_Icc.mpr
|
||||
constructor
|
||||
· exact le_of_lt l₃
|
||||
· trans 1
|
||||
exact (Set.mem_Icc.1 hx).2
|
||||
exact one_le_pi_div_two
|
||||
|
||||
|
||||
example : IntervalIntegrable (log ∘ sin) volume 0 1 := by
|
||||
|
||||
have int_log : IntervalIntegrable log volume 0 1 := by sorry
|
||||
have int_log : IntervalIntegrable (fun x ↦ ‖log x‖) volume 0 1 := by
|
||||
apply IntervalIntegrable.norm
|
||||
rw [← neg_neg log]
|
||||
apply IntervalIntegrable.neg
|
||||
apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x))
|
||||
· exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg
|
||||
· intro x hx
|
||||
norm_num at hx
|
||||
convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1
|
||||
norm_num
|
||||
· intro x hx
|
||||
norm_num at hx
|
||||
rw [Pi.neg_apply, Left.nonneg_neg_iff]
|
||||
exact (log_nonpos_iff hx.left).mpr hx.right.le
|
||||
|
||||
apply IntervalIntegrable.mono_fun' (g := log)
|
||||
|
||||
have int_log : IntervalIntegrable (fun x ↦ ‖log ((π / 2)⁻¹ * x)‖) volume 0 1 := by
|
||||
|
||||
have A := IntervalIntegrable.comp_mul_right int_log (π / 2)⁻¹
|
||||
simp only [norm_eq_abs] at A
|
||||
conv =>
|
||||
arg 1
|
||||
intro x
|
||||
rw [mul_comm]
|
||||
simp only [norm_eq_abs]
|
||||
apply IntervalIntegrable.mono A
|
||||
simp
|
||||
trans Set.Icc 0 (π / 2)
|
||||
exact Set.Icc_subset_Icc (Preorder.le_refl 0) one_le_pi_div_two
|
||||
exact Set.Icc_subset_uIcc
|
||||
exact Preorder.le_refl volume
|
||||
|
||||
apply IntervalIntegrable.mono_fun' (g := fun x ↦ ‖log ((π / 2)⁻¹ * x)‖)
|
||||
exact int_log
|
||||
|
||||
-- AEStronglyMeasurable (log ∘ sin) (volume.restrict (Ι 0 1))
|
||||
@ -24,32 +154,42 @@ example : IntervalIntegrable (log ∘ sin) volume 0 1 := by
|
||||
intro x hx
|
||||
by_contra contra
|
||||
simp at contra
|
||||
rw [contra] at hx
|
||||
rw [Set.left_mem_uIoc] at hx
|
||||
rw [contra, Set.left_mem_uIoc] at hx
|
||||
linarith
|
||||
exact continuousOn_sin
|
||||
--
|
||||
|
||||
-- Set.MapsTo sin (Ι 0 1) (Ι 0 1)
|
||||
rw [Set.uIoc_of_le (zero_le_one' ℝ)]
|
||||
exact fun x hx ↦ ⟨sin_pos_of_pos_of_le_one hx.1 hx.2, sin_le_one x⟩
|
||||
--
|
||||
exact measurableSet_uIoc
|
||||
--
|
||||
|
||||
have : ∀ x ∈ (Ι 0 1), ‖(log ∘ sin) x‖ ≤ log x := by sorry
|
||||
-- MeasurableSet (Ι 0 1)
|
||||
exact measurableSet_uIoc
|
||||
|
||||
-- (fun x => ‖(log ∘ sin) x‖) ≤ᶠ[ae (volume.restrict (Ι 0 1))] ‖log‖
|
||||
dsimp [EventuallyLE]
|
||||
rw [MeasureTheory.ae_restrict_iff]
|
||||
apply MeasureTheory.ae_of_all
|
||||
exact this
|
||||
intro x hx
|
||||
have : x ∈ Set.Icc 0 1 := by
|
||||
simp
|
||||
simp at hx
|
||||
constructor
|
||||
· exact le_of_lt hx.1
|
||||
· exact hx.2
|
||||
let A := logsinBound x this
|
||||
simp only [Function.comp_apply, norm_eq_abs] at A
|
||||
exact A
|
||||
|
||||
--intro x
|
||||
rw [MeasureTheory.ae_iff]
|
||||
simp
|
||||
|
||||
rw [MeasureTheory.ae_iff]
|
||||
simp
|
||||
|
||||
|
||||
sorry
|
||||
apply measurableSet_le
|
||||
apply Measurable.comp'
|
||||
exact continuous_abs.measurable
|
||||
exact Measurable.comp' measurable_log continuous_sin.measurable
|
||||
-- Measurable fun a => |log ((π / 2)⁻¹ * a)|
|
||||
apply Measurable.comp'
|
||||
exact continuous_abs.measurable
|
||||
apply Measurable.comp'
|
||||
exact measurable_log
|
||||
exact measurable_const_mul (π / 2)⁻¹
|
||||
|
||||
|
||||
theorem logInt
|
||||
|
Loading…
Reference in New Issue
Block a user