Update cauchyRiemann.lean
This commit is contained in:
parent
38eaf677f9
commit
2d2a21be72
@ -1,15 +1,4 @@
|
||||
--import Mathlib.Analysis.Calculus.Conformal.NormedSpace
|
||||
--import Mathlib.Analysis.Calculus.ContDiff.Basic
|
||||
--import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||
--import Mathlib.Analysis.Calculus.Deriv.Linear
|
||||
--import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||
--import Mathlib.Analysis.Calculus.FDeriv.Comp
|
||||
--import Mathlib.Analysis.Calculus.FDeriv.Linear
|
||||
--import Mathlib.Analysis.Calculus.FDeriv.RestrictScalars
|
||||
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||
--import Mathlib.Analysis.Complex.Basic
|
||||
--import Mathlib.Analysis.Complex.CauchyIntegral
|
||||
--import Mathlib.Analysis.Complex.Conformal
|
||||
import Mathlib.Analysis.Complex.RealDeriv
|
||||
|
||||
variable {z : ℂ} {f : ℂ → ℂ}
|
||||
@ -17,37 +6,15 @@ variable {z : ℂ} {f : ℂ → ℂ}
|
||||
theorem CauchyRiemann₁ : (DifferentiableAt ℂ f z)
|
||||
→ (fderiv ℝ f z) Complex.I = Complex.I * (fderiv ℝ f z) 1 := by
|
||||
intro h
|
||||
let A := fderiv ℂ f z
|
||||
have t₁ : A (Complex.I • 1) = Complex.I • (A 1) := by
|
||||
exact ContinuousLinearMap.map_smul_of_tower A Complex.I 1
|
||||
let AR := (ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z))
|
||||
have t₂ : AR (Complex.I • 1) = Complex.I • (AR 1) := by
|
||||
exact t₁
|
||||
have t₂a : Complex.I * (AR 1) = Complex.I • (AR 1) := by
|
||||
exact rfl
|
||||
rw [← t₂a] at t₂
|
||||
have t₂c : AR Complex.I = Complex.I • (AR 1) := by
|
||||
simp at t₂
|
||||
exact t₂
|
||||
have t₃ : fderiv ℝ f z = ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z) := by
|
||||
exact DifferentiableAt.fderiv_restrictScalars ℝ h
|
||||
rw [t₃]
|
||||
exact t₂c
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ h]
|
||||
nth_rewrite 1 [← mul_one Complex.I]
|
||||
exact ContinuousLinearMap.map_smul_of_tower (fderiv ℂ f z) Complex.I 1
|
||||
|
||||
theorem CauchyRiemann₂ : (DifferentiableAt ℂ f z)
|
||||
→ lineDeriv ℝ f z Complex.I = Complex.I * lineDeriv ℝ f z 1 := by
|
||||
intro h
|
||||
|
||||
have : lineDeriv ℝ f z Complex.I = (fderiv ℝ f z) Complex.I := by
|
||||
apply DifferentiableAt.lineDeriv_eq_fderiv
|
||||
apply h.restrictScalars ℝ
|
||||
rw [this]
|
||||
|
||||
have : lineDeriv ℝ f z 1 = (fderiv ℝ f z) 1 := by
|
||||
apply DifferentiableAt.lineDeriv_eq_fderiv
|
||||
apply h.restrictScalars ℝ
|
||||
rw [this]
|
||||
|
||||
rw [DifferentiableAt.lineDeriv_eq_fderiv (h.restrictScalars ℝ)]
|
||||
rw [DifferentiableAt.lineDeriv_eq_fderiv (h.restrictScalars ℝ)]
|
||||
exact CauchyRiemann₁ h
|
||||
|
||||
theorem CauchyRiemann₃ : (DifferentiableAt ℂ f z)
|
||||
|
Loading…
Reference in New Issue
Block a user