Working…
This commit is contained in:
parent
a6defe8296
commit
279dcd32b9
|
@ -84,6 +84,44 @@ theorem AnalyticAt.stronglyMeromorphicAt
|
|||
tauto
|
||||
|
||||
|
||||
/- Strong meromorphic depends only on germ -/
|
||||
theorem stronglyMeromorphicAt_congr
|
||||
{f g : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hfg : f =ᶠ[𝓝 z₀] g) :
|
||||
StronglyMeromorphicAt f z₀ ↔ StronglyMeromorphicAt g z₀ := by
|
||||
unfold StronglyMeromorphicAt
|
||||
constructor
|
||||
· intro h
|
||||
rcases h with h|h
|
||||
· left
|
||||
exact Filter.EventuallyEq.rw h (fun x => Eq (g x)) (id (Filter.EventuallyEq.symm hfg))
|
||||
· obtain ⟨n, h, h₁h, h₂h, h₃h⟩ := h
|
||||
right
|
||||
use n
|
||||
use h
|
||||
constructor
|
||||
· assumption
|
||||
· constructor
|
||||
· assumption
|
||||
· apply Filter.EventuallyEq.trans hfg.symm
|
||||
assumption
|
||||
· intro h
|
||||
rcases h with h|h
|
||||
· left
|
||||
exact Filter.EventuallyEq.rw h (fun x => Eq (f x)) hfg
|
||||
· obtain ⟨n, h, h₁h, h₂h, h₃h⟩ := h
|
||||
right
|
||||
use n
|
||||
use h
|
||||
constructor
|
||||
· assumption
|
||||
· constructor
|
||||
· assumption
|
||||
· apply Filter.EventuallyEq.trans hfg
|
||||
assumption
|
||||
|
||||
|
||||
/- Make strongly MeromorphicAt -/
|
||||
noncomputable def MeromorphicAt.makeStronglyMeromorphicAt
|
||||
{f : ℂ → ℂ}
|
||||
|
|
|
@ -45,6 +45,32 @@ theorem AnalyticOn.stronglyMeromorphicOn
|
|||
exact h₁f z hz
|
||||
|
||||
|
||||
/- Strongly meromorphic functions on compact, preconnected sets are quotients of analytic functions -/
|
||||
theorem StronglyMeromorphicOn_finite
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsCompact U)
|
||||
(h₂U : IsPreconnected U)
|
||||
(h₁f : StronglyMeromorphicOn f U)
|
||||
(h₂f : ∃ z ∈ U, f z ≠ 0) :
|
||||
Set.Finite {z ∈ U | f z = 0} := by
|
||||
|
||||
sorry
|
||||
|
||||
|
||||
/- Strongly meromorphic functions on compact, preconnected sets are quotients of analytic functions -/
|
||||
theorem StronglyMeromorphicOn_quotient
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsCompact U)
|
||||
(h₂U : IsPreconnected U)
|
||||
(h₁f : StronglyMeromorphicOn f U)
|
||||
(h₂f : ∃ z ∈ U, f z ≠ 0) :
|
||||
∃ a b : ℂ → ℂ, (AnalyticOnNhd ℂ a U) ∧ (AnalyticOnNhd ℂ b U) ∧ (∀ z ∈ U, a z ≠ 0 ∨ b z ≠ 0) ∧ f = a / b := by
|
||||
|
||||
sorry
|
||||
|
||||
|
||||
/- Make strongly MeromorphicAt -/
|
||||
noncomputable def MeromorphicOn.makeStronglyMeromorphicOn
|
||||
{f : ℂ → ℂ}
|
||||
|
@ -57,9 +83,48 @@ noncomputable def MeromorphicOn.makeStronglyMeromorphicOn
|
|||
· exact f z
|
||||
|
||||
|
||||
theorem makeStronglyMeromorphicOn_changeDiscrete
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : MeromorphicOn f U)
|
||||
(hz₀ : z₀ ∈ U) :
|
||||
hf.makeStronglyMeromorphicOn =ᶠ[𝓝[≠] z₀] f := by
|
||||
apply Filter.eventually_iff_exists_mem.2
|
||||
let A := (hf z₀ hz₀).eventually_analyticAt
|
||||
obtain ⟨V, h₁V, h₂V⟩ := Filter.eventually_iff_exists_mem.1 A
|
||||
use V
|
||||
constructor
|
||||
· assumption
|
||||
· intro v hv
|
||||
unfold MeromorphicOn.makeStronglyMeromorphicOn
|
||||
by_cases h₂v : v ∈ U
|
||||
· simp [h₂v]
|
||||
rw [← makeStronglyMeromorphic_id]
|
||||
exact AnalyticAt.stronglyMeromorphicAt (h₂V v hv)
|
||||
· simp [h₂v]
|
||||
|
||||
|
||||
theorem makeStronglyMeromorphicOn_changeDiscrete'
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : MeromorphicOn f U)
|
||||
(hz₀ : z₀ ∈ U) :
|
||||
hf.makeStronglyMeromorphicOn =ᶠ[𝓝 z₀] (hf z₀ hz₀).makeStronglyMeromorphicAt := by
|
||||
apply Mnhds
|
||||
let A := makeStronglyMeromorphicOn_changeDiscrete hf hz₀
|
||||
apply Filter.EventuallyEq.trans A
|
||||
exact m₂ (hf z₀ hz₀)
|
||||
unfold MeromorphicOn.makeStronglyMeromorphicOn
|
||||
simp [hz₀]
|
||||
|
||||
|
||||
theorem StronglyMeromorphicOn_of_makeStronglyMeromorphicOn
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hf : MeromorphicOn f U) :
|
||||
StronglyMeromorphicOn hf.makeStronglyMeromorphicOn U := by
|
||||
sorry
|
||||
intro z₀ hz₀
|
||||
rw [stronglyMeromorphicAt_congr (makeStronglyMeromorphicOn_changeDiscrete' hf hz₀)]
|
||||
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (hf z₀ hz₀)
|
||||
|
|
Loading…
Reference in New Issue