Working…
This commit is contained in:
		| @@ -84,6 +84,44 @@ theorem AnalyticAt.stronglyMeromorphicAt | ||||
|     tauto | ||||
|  | ||||
|  | ||||
| /- Strong meromorphic depends only on germ -/ | ||||
| theorem stronglyMeromorphicAt_congr | ||||
|   {f g : ℂ → ℂ} | ||||
|   {z₀ : ℂ} | ||||
|   (hfg : f =ᶠ[𝓝 z₀] g) : | ||||
|   StronglyMeromorphicAt f z₀ ↔ StronglyMeromorphicAt g z₀ := by | ||||
|   unfold StronglyMeromorphicAt | ||||
|   constructor | ||||
|   · intro h | ||||
|     rcases h with h|h | ||||
|     · left | ||||
|       exact Filter.EventuallyEq.rw h (fun x => Eq (g x)) (id (Filter.EventuallyEq.symm hfg)) | ||||
|     · obtain ⟨n, h, h₁h, h₂h, h₃h⟩ := h | ||||
|       right | ||||
|       use n | ||||
|       use h | ||||
|       constructor | ||||
|       · assumption | ||||
|       · constructor | ||||
|         · assumption | ||||
|         · apply Filter.EventuallyEq.trans hfg.symm | ||||
|           assumption | ||||
|   · intro h | ||||
|     rcases h with h|h | ||||
|     · left | ||||
|       exact Filter.EventuallyEq.rw h (fun x => Eq (f x)) hfg | ||||
|     · obtain ⟨n, h, h₁h, h₂h, h₃h⟩ := h | ||||
|       right | ||||
|       use n | ||||
|       use h | ||||
|       constructor | ||||
|       · assumption | ||||
|       · constructor | ||||
|         · assumption | ||||
|         · apply Filter.EventuallyEq.trans hfg | ||||
|           assumption | ||||
|  | ||||
|  | ||||
| /- Make strongly MeromorphicAt -/ | ||||
| noncomputable def MeromorphicAt.makeStronglyMeromorphicAt | ||||
|   {f : ℂ → ℂ} | ||||
|   | ||||
| @@ -45,6 +45,32 @@ theorem AnalyticOn.stronglyMeromorphicOn | ||||
|   exact h₁f z hz | ||||
|  | ||||
|  | ||||
| /- Strongly meromorphic functions on compact, preconnected sets are quotients of analytic functions -/ | ||||
| theorem StronglyMeromorphicOn_finite | ||||
|   {f : ℂ → ℂ} | ||||
|   {U : Set ℂ} | ||||
|   (h₁U : IsCompact U) | ||||
|   (h₂U : IsPreconnected U) | ||||
|   (h₁f : StronglyMeromorphicOn f U) | ||||
|   (h₂f : ∃ z ∈ U, f z ≠ 0) : | ||||
|   Set.Finite {z ∈ U | f z = 0} := by | ||||
|  | ||||
|   sorry | ||||
|  | ||||
|  | ||||
| /- Strongly meromorphic functions on compact, preconnected sets are quotients of analytic functions -/ | ||||
| theorem StronglyMeromorphicOn_quotient | ||||
|   {f : ℂ → ℂ} | ||||
|   {U : Set ℂ} | ||||
|   (h₁U : IsCompact U) | ||||
|   (h₂U : IsPreconnected U) | ||||
|   (h₁f : StronglyMeromorphicOn f U) | ||||
|   (h₂f : ∃ z ∈ U, f z ≠ 0) : | ||||
|   ∃ a b : ℂ → ℂ, (AnalyticOnNhd ℂ a U) ∧ (AnalyticOnNhd ℂ b U) ∧ (∀ z ∈ U, a z ≠ 0 ∨ b z ≠ 0) ∧ f = a / b := by | ||||
|  | ||||
|   sorry | ||||
|  | ||||
|  | ||||
| /- Make strongly MeromorphicAt -/ | ||||
| noncomputable def MeromorphicOn.makeStronglyMeromorphicOn | ||||
|   {f : ℂ → ℂ} | ||||
| @@ -57,9 +83,48 @@ noncomputable def MeromorphicOn.makeStronglyMeromorphicOn | ||||
|   · exact f z | ||||
|  | ||||
|  | ||||
| theorem makeStronglyMeromorphicOn_changeDiscrete | ||||
|   {f : ℂ → ℂ} | ||||
|   {U : Set ℂ} | ||||
|   {z₀ : ℂ} | ||||
|   (hf : MeromorphicOn f U) | ||||
|   (hz₀ : z₀ ∈ U) : | ||||
|   hf.makeStronglyMeromorphicOn =ᶠ[𝓝[≠] z₀] f := by | ||||
|   apply Filter.eventually_iff_exists_mem.2 | ||||
|   let A := (hf z₀ hz₀).eventually_analyticAt | ||||
|   obtain ⟨V, h₁V, h₂V⟩  := Filter.eventually_iff_exists_mem.1 A | ||||
|   use V | ||||
|   constructor | ||||
|   · assumption | ||||
|   · intro v hv | ||||
|     unfold MeromorphicOn.makeStronglyMeromorphicOn | ||||
|     by_cases h₂v : v ∈ U | ||||
|     · simp [h₂v] | ||||
|       rw [← makeStronglyMeromorphic_id] | ||||
|       exact AnalyticAt.stronglyMeromorphicAt (h₂V v hv) | ||||
|     · simp [h₂v] | ||||
|  | ||||
|  | ||||
| theorem makeStronglyMeromorphicOn_changeDiscrete' | ||||
|   {f : ℂ → ℂ} | ||||
|   {U : Set ℂ} | ||||
|   {z₀ : ℂ} | ||||
|   (hf : MeromorphicOn f U) | ||||
|   (hz₀ : z₀ ∈ U) : | ||||
|   hf.makeStronglyMeromorphicOn =ᶠ[𝓝 z₀] (hf z₀ hz₀).makeStronglyMeromorphicAt := by | ||||
|   apply Mnhds | ||||
|   let A := makeStronglyMeromorphicOn_changeDiscrete hf hz₀ | ||||
|   apply Filter.EventuallyEq.trans A | ||||
|   exact m₂ (hf z₀ hz₀) | ||||
|   unfold MeromorphicOn.makeStronglyMeromorphicOn | ||||
|   simp [hz₀] | ||||
|  | ||||
|  | ||||
| theorem StronglyMeromorphicOn_of_makeStronglyMeromorphicOn | ||||
|   {f : ℂ → ℂ} | ||||
|   {U : Set ℂ} | ||||
|   (hf : MeromorphicOn f U) : | ||||
|   StronglyMeromorphicOn hf.makeStronglyMeromorphicOn U := by | ||||
|   sorry | ||||
|   intro z₀ hz₀ | ||||
|   rw [stronglyMeromorphicAt_congr (makeStronglyMeromorphicOn_changeDiscrete' hf hz₀)] | ||||
|   exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (hf z₀ hz₀) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus