Update stronglyMeromorphic.lean
This commit is contained in:
parent
8408172272
commit
25b0ffd899
|
@ -81,26 +81,69 @@ theorem AnalyticAt.stronglyMeromorphicAt
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
|
|
||||||
|
theorem MeromorphicAt.order_neq_top_iff
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{z₀ : ℂ}
|
||||||
|
(hf : MeromorphicAt f z₀) :
|
||||||
|
hf.order ≠ ⊤ ↔ ∃ (g : ℂ → ℂ), AnalyticAt ℂ g z₀ ∧ g z₀ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z = (z - z₀) ^ (hf.order.untop' 0) • g z := by
|
||||||
|
|
||||||
|
rw [← hf.order_eq_int_iff (hf.order.untop' 0)]
|
||||||
|
constructor
|
||||||
|
· intro h₁f
|
||||||
|
apply?
|
||||||
|
exact Eq.symm (ENat.coe_toNat h₁f)
|
||||||
|
· intro h₁f
|
||||||
|
exact ENat.coe_toNat_eq_self.mp (id (Eq.symm h₁f))
|
||||||
|
|
||||||
|
|
||||||
/- Make strongly MeromorphicAt -/
|
/- Make strongly MeromorphicAt -/
|
||||||
noncomputable def MeromorphicAt.makeStronglyMeromorphicAt
|
noncomputable def MeromorphicAt.makeStronglyMeromorphicAt
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{z₀ : ℂ}
|
{z₀ : ℂ}
|
||||||
(hf : MeromorphicAt f z₀) :
|
(hf : MeromorphicAt f z₀) :
|
||||||
ℂ → ℂ := by
|
ℂ → ℂ := by
|
||||||
by_cases h₂f : hf.order = 0
|
|
||||||
· have : (0 : WithTop ℤ) = (0 : ℤ) := rfl
|
by_cases h₁f : hf.order = ⊤
|
||||||
rw [this, hf.order_eq_int_iff] at h₂f
|
|
||||||
exact Classical.choose h₂f
|
|
||||||
· exact 0
|
· exact 0
|
||||||
|
·
|
||||||
|
|
||||||
|
intro z
|
||||||
|
by_cases z = z₀
|
||||||
|
· by_cases h₂f : hf.order = 0
|
||||||
|
· have : (0 : WithTop ℤ) = (0 : ℤ) := rfl
|
||||||
|
rw [this, hf.order_eq_int_iff] at h₂f
|
||||||
|
exact (Classical.choose h₂f) z₀
|
||||||
|
· exact 0
|
||||||
|
· exact f z
|
||||||
|
|
||||||
|
|
||||||
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
|
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{z₀ : ℂ}
|
{z₀ : ℂ}
|
||||||
(hf : MeromorphicAt f z₀) :
|
(hf : MeromorphicAt f z₀) :
|
||||||
StronglyMeromorphicAt hf.makeStronglyMeromorphic z₀ := by
|
StronglyMeromorphicAt hf.makeStronglyMeromorphicAt z₀ := by
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
by_cases h₂f : hf.order = 0
|
||||||
|
· apply AnalyticAt.stronglyMeromorphicAt
|
||||||
|
|
||||||
|
let A := h₂f
|
||||||
|
rw [(by rfl : (0 : WithTop ℤ) = (0 : ℤ)), hf.order_eq_int_iff] at A
|
||||||
|
simp at A
|
||||||
|
have : hf.makeStronglyMeromorphicAt = Classical.choose A := by
|
||||||
|
simp [MeromorphicAt.makeStronglyMeromorphicAt, h₂f]
|
||||||
|
let B := Classical.choose_spec A
|
||||||
|
|
||||||
|
rw [this]
|
||||||
|
tauto
|
||||||
|
· by_cases h₃f : hf.order = ⊤
|
||||||
|
· rw [MeromorphicAt.order_eq_top_iff] at h₃f
|
||||||
|
left
|
||||||
|
|
||||||
|
sorry
|
||||||
|
· sorry
|
||||||
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
theorem makeStronglyMeromorphic_eventuallyEq
|
theorem makeStronglyMeromorphic_eventuallyEq
|
||||||
|
|
Loading…
Reference in New Issue