nevanlinna/Nevanlinna/stronglyMeromorphic.lean

155 lines
4.3 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
import Nevanlinna.mathlibAddOn
/- Strongly MeromorphicAt -/
def StronglyMeromorphicAt
(f : )
(z₀ : ) :=
(∀ᶠ (z : ) in nhds z₀, f z = 0) (∃ (n : ), ∃ g : , (AnalyticAt g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ) in nhds z₀, f z = (z - z₀) ^ n • g z))
/- Strongly MeromorphicAt is Meromorphic -/
theorem StronglyMeromorphicAt.meromorphicAt
{f : }
{z₀ : }
(hf : StronglyMeromorphicAt f z₀) :
MeromorphicAt f z₀ := by
rcases hf with h|h
· use 0; simp
rw [analyticAt_congr h]
exact analyticAt_const
· obtain ⟨n, g, h₁g, _, h₃g⟩ := h
rw [meromorphicAt_congr' h₃g]
apply MeromorphicAt.smul
apply MeromorphicAt.zpow
apply MeromorphicAt.sub
apply MeromorphicAt.id
apply MeromorphicAt.const
exact AnalyticAt.meromorphicAt h₁g
/- Strongly MeromorphicAt of non-negative order is analytic -/
theorem StronglyMeromorphicAt.analytic
{f : }
{z₀ : }
(h₁f : StronglyMeromorphicAt f z₀)
(h₂f : 0 ≤ h₁f.meromorphicAt.order):
AnalyticAt f z₀ := by
let h₁f' := h₁f
rcases h₁f' with h|h
· rw [analyticAt_congr h]
exact analyticAt_const
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h
rw [analyticAt_congr h₃g]
have : h₁f.meromorphicAt.order = n := by
rw [MeromorphicAt.order_eq_int_iff]
use g
constructor
· exact h₁g
· constructor
· exact h₂g
· exact Filter.EventuallyEq.filter_mono h₃g nhdsWithin_le_nhds
rw [this] at h₂f
apply AnalyticAt.smul
nth_rw 1 [← Int.toNat_of_nonneg (WithTop.coe_nonneg.mp h₂f)]
apply AnalyticAt.pow
apply AnalyticAt.sub
apply analyticAt_id -- Warning: want apply AnalyticAt.id
apply analyticAt_const -- Warning: want AnalyticAt.const
exact h₁g
/- Analytic functions are strongly meromorphic -/
theorem AnalyticAt.stronglyMeromorphicAt
{f : }
{z₀ : }
(h₁f : AnalyticAt f z₀) :
StronglyMeromorphicAt f z₀ := by
by_cases h₂f : h₁f.order =
· rw [AnalyticAt.order_eq_top_iff] at h₂f
tauto
· have : h₁f.order ≠ := h₂f
rw [← ENat.coe_toNat_eq_self] at this
rw [eq_comm, AnalyticAt.order_eq_nat_iff] at this
right
use h₁f.order.toNat
obtain ⟨g, h₁g, h₂g, h₃g⟩ := this
use g
tauto
theorem MeromorphicAt.order_neq_top_iff
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
hf.order ≠ ↔ ∃ (g : ), AnalyticAt g z₀ ∧ g z₀ ≠ 0 ∧ ∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z = (z - z₀) ^ (hf.order.untop' 0) • g z := by
rw [← hf.order_eq_int_iff (hf.order.untop' 0)]
constructor
· intro h₁f
apply?
exact Eq.symm (ENat.coe_toNat h₁f)
· intro h₁f
exact ENat.coe_toNat_eq_self.mp (id (Eq.symm h₁f))
/- Make strongly MeromorphicAt -/
noncomputable def MeromorphicAt.makeStronglyMeromorphicAt
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
:= by
by_cases h₁f : hf.order =
· exact 0
·
intro z
by_cases z = z₀
· by_cases h₂f : hf.order = 0
· have : (0 : WithTop ) = (0 : ) := rfl
rw [this, hf.order_eq_int_iff] at h₂f
exact (Classical.choose h₂f) z₀
· exact 0
· exact f z
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
StronglyMeromorphicAt hf.makeStronglyMeromorphicAt z₀ := by
by_cases h₂f : hf.order = 0
· apply AnalyticAt.stronglyMeromorphicAt
let A := h₂f
rw [(by rfl : (0 : WithTop ) = (0 : )), hf.order_eq_int_iff] at A
simp at A
have : hf.makeStronglyMeromorphicAt = Classical.choose A := by
simp [MeromorphicAt.makeStronglyMeromorphicAt, h₂f]
let B := Classical.choose_spec A
rw [this]
tauto
· by_cases h₃f : hf.order =
· rw [MeromorphicAt.order_eq_top_iff] at h₃f
left
sorry
· sorry
theorem makeStronglyMeromorphic_eventuallyEq
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z = hf.makeStronglyMeromorphicAt z := by
sorry