Update stronglyMeromorphic.lean
This commit is contained in:
parent
67b78ad72d
commit
1c31e68e2a
|
@ -1,21 +1,69 @@
|
|||
import Mathlib.Analysis.Analytic.Meromorphic
|
||||
import Nevanlinna.analyticAt
|
||||
|
||||
|
||||
/- Strongly MeromorphicAt -/
|
||||
|
||||
def StronglyMeromorphicAt
|
||||
(f : ℂ → ℂ)
|
||||
(z₀ : ℂ) :=
|
||||
(∀ᶠ (z : ℂ) in nhds z₀, f z = 0) ∨ (∃ (n : ℕ), ∃ g : ℂ → ℂ, (AnalyticAt ℂ g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ n • g z))
|
||||
(∀ᶠ (z : ℂ) in nhds z₀, f z = 0) ∨ (∃ (n : ℤ), ∃ g : ℂ → ℂ, (AnalyticAt ℂ g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ n • g z))
|
||||
|
||||
def MeromorphicAt.makeStronglyMeromorphic
|
||||
|
||||
/- Strongly MeromorphicAt is Meromorphic -/
|
||||
theorem StronglyMeromorphicAt.meromorphicAt
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : StronglyMeromorphicAt f z₀) :
|
||||
MeromorphicAt f z₀ := by
|
||||
rcases hf with h|h
|
||||
· use 0; simp
|
||||
rw [analyticAt_congr h]
|
||||
exact analyticAt_const
|
||||
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h
|
||||
have : MeromorphicAt (fun z ↦ (z - z₀) ^ n • g z) z₀ := by
|
||||
simp
|
||||
apply MeromorphicAt.mul
|
||||
apply MeromorphicAt.zpow
|
||||
apply MeromorphicAt.sub
|
||||
|
||||
sorry
|
||||
apply MeromorphicAt.congr this
|
||||
rw [Filter.eventuallyEq_comm]
|
||||
exact Filter.EventuallyEq.filter_mono h₃g nhdsWithin_le_nhds
|
||||
|
||||
/- Strongly MeromorphicAt of positive order is analytic -/
|
||||
theorem StronglyMeromorphicAt.analytic
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(h₁f : StronglyMeromorphicAt f z₀)
|
||||
(h₂f : 0 ≤ h₁f.meromorphicAt.order):
|
||||
AnalyticAt ℂ f z₀ := by
|
||||
sorry
|
||||
|
||||
|
||||
|
||||
/- Make strongly MeromorphicAt -/
|
||||
|
||||
def MeromorphicAt.makeStronglyMeromorphicAt
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : MeromorphicAt f z₀) :
|
||||
ℂ → ℂ := by
|
||||
exact 0
|
||||
|
||||
theorem makeStronglyMeromorphic
|
||||
|
||||
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : MeromorphicAt f z₀) :
|
||||
StronglyMeromorphicAt hf.makeStronglyMeromorphic z₀ := by
|
||||
sorry
|
||||
|
||||
|
||||
theorem makeStronglyMeromorphic_eventuallyEq
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : MeromorphicAt f z₀) :
|
||||
∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z = hf.makeStronglyMeromorphicAt z := by
|
||||
sorry
|
||||
|
|
Loading…
Reference in New Issue