nevanlinna/Nevanlinna/stronglyMeromorphic.lean

70 lines
1.8 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
/- Strongly MeromorphicAt -/
def StronglyMeromorphicAt
(f : )
(z₀ : ) :=
(∀ᶠ (z : ) in nhds z₀, f z = 0) (∃ (n : ), ∃ g : , (AnalyticAt g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ) in nhds z₀, f z = (z - z₀) ^ n • g z))
/- Strongly MeromorphicAt is Meromorphic -/
theorem StronglyMeromorphicAt.meromorphicAt
{f : }
{z₀ : }
(hf : StronglyMeromorphicAt f z₀) :
MeromorphicAt f z₀ := by
rcases hf with h|h
· use 0; simp
rw [analyticAt_congr h]
exact analyticAt_const
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h
have : MeromorphicAt (fun z ↦ (z - z₀) ^ n • g z) z₀ := by
simp
apply MeromorphicAt.mul
apply MeromorphicAt.zpow
apply MeromorphicAt.sub
sorry
apply MeromorphicAt.congr this
rw [Filter.eventuallyEq_comm]
exact Filter.EventuallyEq.filter_mono h₃g nhdsWithin_le_nhds
/- Strongly MeromorphicAt of positive order is analytic -/
theorem StronglyMeromorphicAt.analytic
{f : }
{z₀ : }
(h₁f : StronglyMeromorphicAt f z₀)
(h₂f : 0 ≤ h₁f.meromorphicAt.order):
AnalyticAt f z₀ := by
sorry
/- Make strongly MeromorphicAt -/
def MeromorphicAt.makeStronglyMeromorphicAt
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
:= by
exact 0
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
StronglyMeromorphicAt hf.makeStronglyMeromorphic z₀ := by
sorry
theorem makeStronglyMeromorphic_eventuallyEq
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z = hf.makeStronglyMeromorphicAt z := by
sorry