Working…
This commit is contained in:
parent
39c70be68c
commit
1c02007e1e
@ -1,64 +1,42 @@
|
|||||||
import Mathlib.Analysis.Analytic.Meromorphic
|
import Mathlib.Analysis.Analytic.Meromorphic
|
||||||
|
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
||||||
|
import Mathlib.MeasureTheory.Integral.IntervalIntegral
|
||||||
import Nevanlinna.analyticAt
|
import Nevanlinna.analyticAt
|
||||||
import Nevanlinna.divisor
|
import Nevanlinna.divisor
|
||||||
import Nevanlinna.meromorphicAt
|
import Nevanlinna.meromorphicAt
|
||||||
import Nevanlinna.meromorphicOn_divisor
|
import Nevanlinna.meromorphicOn_divisor
|
||||||
import Nevanlinna.stronglyMeromorphicOn
|
import Nevanlinna.stronglyMeromorphicOn
|
||||||
import Nevanlinna.mathlibAddOn
|
import Nevanlinna.mathlibAddOn
|
||||||
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
|
||||||
import Mathlib.MeasureTheory.Integral.IntervalIntegral
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
open scoped Interval Topology
|
open scoped Interval Topology
|
||||||
open Real Filter MeasureTheory intervalIntegral
|
open Real Filter MeasureTheory intervalIntegral
|
||||||
|
|
||||||
|
|
||||||
lemma b
|
|
||||||
(S U : Set ℂ)
|
|
||||||
(hS : S ∈ Filter.codiscreteWithin U) :
|
|
||||||
DiscreteTopology ((S ∪ Uᶜ)ᶜ : Set ℂ) := by
|
|
||||||
|
|
||||||
rw [mem_codiscreteWithin] at hS
|
|
||||||
simp at hS
|
|
||||||
have : (U \ S)ᶜ = S ∪ Uᶜ := by
|
|
||||||
ext z
|
|
||||||
simp
|
|
||||||
tauto
|
|
||||||
|
|
||||||
rw [discreteTopology_subtype_iff]
|
|
||||||
intro x hx
|
|
||||||
rw [← mem_iff_inf_principal_compl]
|
|
||||||
|
|
||||||
simp at hx
|
|
||||||
let A := hS x hx.2
|
|
||||||
rw [← this]
|
|
||||||
assumption
|
|
||||||
|
|
||||||
|
|
||||||
lemma c
|
|
||||||
(S U : Set ℂ)
|
|
||||||
(hS : S ∈ Filter.codiscreteWithin U) :
|
|
||||||
Countable ((S ∪ Uᶜ)ᶜ : Set ℂ) := by
|
|
||||||
let A := b S U hS
|
|
||||||
apply TopologicalSpace.separableSpace_iff_countable.1
|
|
||||||
exact TopologicalSpace.SecondCountableTopology.to_separableSpace
|
|
||||||
|
|
||||||
|
|
||||||
theorem d
|
theorem d
|
||||||
{U S : Set ℂ}
|
{U S : Set ℂ}
|
||||||
|
{c : ℂ}
|
||||||
{r : ℝ}
|
{r : ℝ}
|
||||||
(hU : Metric.sphere 0 |r| ⊆ U)
|
(hr : r ≠ 0)
|
||||||
|
(hU : Metric.sphere c |r| ⊆ U)
|
||||||
(hS : S ∈ Filter.codiscreteWithin U) :
|
(hS : S ∈ Filter.codiscreteWithin U) :
|
||||||
Countable ((circleMap 0 r)⁻¹' (S ∪ Uᶜ)ᶜ) := by
|
Countable ((circleMap c r)⁻¹' Sᶜ) := by
|
||||||
|
|
||||||
have : (circleMap 0 r)⁻¹' U = ⊤ := by
|
have : (circleMap c r)⁻¹' (S ∪ Uᶜ)ᶜ = (circleMap c r)⁻¹' Sᶜ := by
|
||||||
simpa
|
simp [(by simpa : (circleMap c r)⁻¹' U = ⊤)]
|
||||||
simp [this]
|
rw [← this]
|
||||||
|
|
||||||
|
apply Set.Countable.preimage_circleMap _ c hr
|
||||||
|
have : DiscreteTopology ((S ∪ Uᶜ)ᶜ : Set ℂ) := by
|
||||||
|
rw [discreteTopology_subtype_iff]
|
||||||
|
rw [mem_codiscreteWithin] at hS; simp at hS
|
||||||
|
|
||||||
|
intro x hx
|
||||||
|
rw [← mem_iff_inf_principal_compl, (by ext z; simp; tauto : S ∪ Uᶜ = (U \ S)ᶜ)]
|
||||||
|
rw [Set.compl_union, compl_compl] at hx
|
||||||
|
exact hS x hx.2
|
||||||
|
|
||||||
sorry
|
apply TopologicalSpace.separableSpace_iff_countable.1
|
||||||
|
exact TopologicalSpace.SecondCountableTopology.to_separableSpace
|
||||||
|
|
||||||
|
|
||||||
theorem integrability_congr_changeDiscrete₀
|
theorem integrability_congr_changeDiscrete₀
|
||||||
@ -81,24 +59,11 @@ theorem integrability_congr_changeDiscrete₀
|
|||||||
|
|
||||||
· apply IntervalIntegrable.congr hf₁
|
· apply IntervalIntegrable.congr hf₁
|
||||||
rw [Filter.eventuallyEq_iff_exists_mem]
|
rw [Filter.eventuallyEq_iff_exists_mem]
|
||||||
use (circleMap 0 r)⁻¹' ({z | f₁ z = f₂ z} ∪ Uᶜ)
|
use (circleMap 0 r)⁻¹' {z | f₁ z = f₂ z}
|
||||||
constructor
|
constructor
|
||||||
· apply Set.Countable.measure_zero
|
· apply Set.Countable.measure_zero (d hr hU hf)
|
||||||
have : (circleMap 0 r ⁻¹' ({z | f₁ z = f₂ z} ∪ Uᶜ))ᶜ = (circleMap 0 r ⁻¹' ({z | f₁ z = f₂ z} ∪ Uᶜ)ᶜ) := by
|
· tauto
|
||||||
exact rfl
|
|
||||||
rw [this]
|
|
||||||
apply Set.Countable.preimage_circleMap
|
|
||||||
let A := c {z | f₁ z = f₂ z} U hf
|
|
||||||
simp at A
|
|
||||||
simpa
|
|
||||||
exact hr
|
|
||||||
· intro x hx
|
|
||||||
simp at hx
|
|
||||||
simp
|
|
||||||
rcases hx with h|h
|
|
||||||
· assumption
|
|
||||||
· let A := hU (circleMap_mem_sphere' 0 r x)
|
|
||||||
tauto
|
|
||||||
|
|
||||||
theorem integrability_congr_changeDiscrete
|
theorem integrability_congr_changeDiscrete
|
||||||
{f₁ f₂ : ℂ → ℂ}
|
{f₁ f₂ : ℂ → ℂ}
|
||||||
@ -117,13 +82,14 @@ theorem integral_congr_changeDiscrete
|
|||||||
{f₁ f₂ : ℂ → ℂ}
|
{f₁ f₂ : ℂ → ℂ}
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
{r : ℝ}
|
{r : ℝ}
|
||||||
|
(hr : r ≠ 0)
|
||||||
(hU : Metric.sphere 0 |r| ⊆ U)
|
(hU : Metric.sphere 0 |r| ⊆ U)
|
||||||
(hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) :
|
(hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) :
|
||||||
∫ (x : ℝ) in (0)..(2 * π), f₁ (circleMap 0 r x) = ∫ (x : ℝ) in (0)..(2 * π), f₂ (circleMap 0 r x) := by
|
∫ (x : ℝ) in (0)..(2 * π), f₁ (circleMap 0 r x) = ∫ (x : ℝ) in (0)..(2 * π), f₂ (circleMap 0 r x) := by
|
||||||
|
|
||||||
apply intervalIntegral.integral_congr_ae
|
apply intervalIntegral.integral_congr_ae
|
||||||
rw [eventually_iff_exists_mem]
|
rw [eventually_iff_exists_mem]
|
||||||
use (circleMap 0 r)⁻¹' ({z | f₁ z = f₂ z} ∪ Uᶜ)
|
use (circleMap 0 r)⁻¹' {z | f₁ z = f₂ z}
|
||||||
|
constructor
|
||||||
|
· apply Set.Countable.measure_zero (d hr hU hf)
|
||||||
sorry
|
· tauto
|
||||||
|
@ -490,3 +490,62 @@ theorem MeromorphicOn.decompose₃'
|
|||||||
rw [sub_eq_zero] at H
|
rw [sub_eq_zero] at H
|
||||||
rw [H] at this
|
rw [H] at this
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
theorem MeromorphicOn.decompose_log
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
(h₁U : IsCompact U)
|
||||||
|
(h₂U : IsConnected U)
|
||||||
|
(h₁f : StronglyMeromorphicOn f U)
|
||||||
|
(h₂f : ∃ u : U, f u ≠ 0) :
|
||||||
|
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
||||||
|
∧ (AnalyticOnNhd ℂ g U)
|
||||||
|
∧ (∀ u : U, g u ≠ 0)
|
||||||
|
∧ (fun z ↦ log ‖f z‖) =ᶠ[Filter.codiscreteWithin U] fun z ↦ log ‖g z‖ + ∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log ‖z - s‖ := by
|
||||||
|
|
||||||
|
have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by
|
||||||
|
exact Divisor.finiteSupport h₁U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
|
||||||
|
|
||||||
|
have hSupp₁ {z : ℂ} : (fun s ↦ (h₁f.meromorphicOn.divisor s) * log ‖z - s‖).support ⊆ h₃f.toFinset := by
|
||||||
|
intro x
|
||||||
|
contrapose
|
||||||
|
simp; tauto
|
||||||
|
simp_rw [finsum_eq_sum_of_support_subset _ hSupp₁]
|
||||||
|
|
||||||
|
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := MeromorphicOn.decompose₃' h₁U h₂U h₁f h₂f
|
||||||
|
have hSupp₂ {z : ℂ} : ( fun (u : ℂ) ↦ (fun (z : ℂ) ↦ (z - u) ^ (h₁f.meromorphicOn.divisor u)) ).mulSupport ⊆ h₃f.toFinset := by
|
||||||
|
intro x
|
||||||
|
contrapose
|
||||||
|
simp
|
||||||
|
intro hx
|
||||||
|
rw [hx]
|
||||||
|
simp; tauto
|
||||||
|
rw [finprod_eq_prod_of_mulSupport_subset _ hSupp₂] at h₄g
|
||||||
|
|
||||||
|
use g
|
||||||
|
simp only [h₁g, h₂g, h₃g, ne_eq, true_and, not_false_eq_true, implies_true]
|
||||||
|
rw [Filter.eventuallyEq_iff_exists_mem]
|
||||||
|
use {z | f z ≠ 0}
|
||||||
|
constructor
|
||||||
|
· sorry
|
||||||
|
· intro z hz
|
||||||
|
nth_rw 1 [h₄g]
|
||||||
|
simp
|
||||||
|
rw [log_mul, log_prod]
|
||||||
|
congr
|
||||||
|
ext u
|
||||||
|
rw [log_zpow]
|
||||||
|
intro x hx
|
||||||
|
simp at hx
|
||||||
|
simp
|
||||||
|
apply zpow_ne_zero
|
||||||
|
simp
|
||||||
|
simp at hz
|
||||||
|
contrapose
|
||||||
|
simp
|
||||||
|
|
||||||
|
|
||||||
|
repeat
|
||||||
|
sorry
|
||||||
|
@ -3,6 +3,45 @@ import Nevanlinna.stronglyMeromorphicOn_eliminate
|
|||||||
|
|
||||||
open Real
|
open Real
|
||||||
|
|
||||||
|
lemma jensen₀
|
||||||
|
{R : ℝ}
|
||||||
|
(hR : 0 < R)
|
||||||
|
(f : ℂ → ℂ)
|
||||||
|
(h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 R))
|
||||||
|
(h₂f : f 0 ≠ 0) :
|
||||||
|
∃ F : ℂ → ℂ,
|
||||||
|
AnalyticOnNhd ℂ F (Metric.closedBall (0 : ℂ) R)
|
||||||
|
∧ (∀ (u : (Metric.closedBall (0 : ℂ) R)), F u ≠ 0)
|
||||||
|
∧ (fun z ↦ log ‖f z‖) =ᶠ[Filter.codiscreteWithin (Metric.closedBall (0 : ℂ) R)] (fun z ↦ log ‖F z‖ + ∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log ‖z - s‖) := by
|
||||||
|
|
||||||
|
have h₁U : IsConnected (Metric.closedBall (0 : ℂ) R) := by
|
||||||
|
constructor
|
||||||
|
· apply Metric.nonempty_closedBall.mpr
|
||||||
|
exact le_of_lt hR
|
||||||
|
· exact (convex_closedBall (0 : ℂ) R).isPreconnected
|
||||||
|
|
||||||
|
have h₂U : IsCompact (Metric.closedBall (0 : ℂ) R) := isCompact_closedBall (0 : ℂ) R
|
||||||
|
|
||||||
|
|
||||||
|
obtain ⟨F, h₁F, h₂F, h₃F, h₄F⟩ := MeromorphicOn.decompose₃' h₂U h₁U h₁f (by use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩)
|
||||||
|
|
||||||
|
use F
|
||||||
|
constructor
|
||||||
|
· exact h₂F
|
||||||
|
· constructor
|
||||||
|
· exact fun u ↦ h₃F u
|
||||||
|
· rw [Filter.eventuallyEq_iff_exists_mem]
|
||||||
|
use {z | f z ≠ 0}
|
||||||
|
constructor
|
||||||
|
· sorry
|
||||||
|
· intro z hz
|
||||||
|
simp at hz
|
||||||
|
nth_rw 1 [h₄F]
|
||||||
|
simp only [Pi.mul_apply, norm_mul]
|
||||||
|
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
theorem jensen
|
theorem jensen
|
||||||
{R : ℝ}
|
{R : ℝ}
|
||||||
|
Loading…
Reference in New Issue
Block a user