nevanlinna/Nevanlinna/stronglyMeromorphicOn_eliminate.lean
Stefan Kebekus 1c02007e1e Working…
2024-12-13 16:03:00 +01:00

552 lines
18 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
import Nevanlinna.divisor
import Nevanlinna.meromorphicAt
import Nevanlinna.meromorphicOn
import Nevanlinna.meromorphicOn_divisor
import Nevanlinna.stronglyMeromorphicOn
import Nevanlinna.stronglyMeromorphicOn_ratlPolynomial
import Nevanlinna.mathlibAddOn
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
theorem MeromorphicOn.decompose₁
{f : }
{U : Set }
{z₀ : }
(h₁f : MeromorphicOn f U)
(h₂f : StronglyMeromorphicAt f z₀)
(h₃f : h₂f.meromorphicAt.order ≠ )
(hz₀ : z₀ ∈ U) :
∃ g : , (MeromorphicOn g U)
∧ (AnalyticAt g z₀)
∧ (g z₀ ≠ 0)
∧ (f = g * fun z ↦ (z - z₀) ^ (h₁f.divisor z₀)) := by
let h₁ := fun z ↦ (z - z₀) ^ (-h₁f.divisor z₀)
have h₁h₁ : MeromorphicOn h₁ U := by
apply MeromorphicOn.zpow
apply AnalyticOnNhd.meromorphicOn
apply AnalyticOnNhd.sub
exact analyticOnNhd_id
exact analyticOnNhd_const
let n : := (-h₁f.divisor z₀)
have h₂h₁ : (h₁h₁ z₀ hz₀).order = n := by
simp_rw [(h₁h₁ z₀ hz₀).order_eq_int_iff]
use 1
constructor
· apply analyticAt_const
· constructor
· simp
· apply eventually_nhdsWithin_of_forall
intro z hz
simp
let g₁ := f * h₁
have h₁g₁ : MeromorphicOn g₁ U := by
apply h₁f.mul h₁h₁
have h₂g₁ : (h₁g₁ z₀ hz₀).order = 0 := by
rw [(h₁f z₀ hz₀).order_mul (h₁h₁ z₀ hz₀)]
rw [h₂h₁]
unfold n
rw [MeromorphicOn.divisor_def₂ h₁f hz₀ h₃f]
conv =>
left
left
rw [Eq.symm (WithTop.coe_untop (h₁f z₀ hz₀).order h₃f)]
have
(a b c : )
(h : a + b = c) :
(a : WithTop ) + (b : WithTop ) = (c : WithTop ) := by
rw [← h]
simp
rw [this ((h₁f z₀ hz₀).order.untop h₃f) (-(h₁f z₀ hz₀).order.untop h₃f) 0]
simp
ring
let g := (h₁g₁ z₀ hz₀).makeStronglyMeromorphicAt
have h₂g : StronglyMeromorphicAt g z₀ := by
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (h₁g₁ z₀ hz₀)
have h₁g : MeromorphicOn g U := by
intro z hz
by_cases h₁z : z = z₀
· rw [h₁z]
apply h₂g.meromorphicAt
· apply (h₁g₁ z hz).congr
rw [eventuallyEq_nhdsWithin_iff]
rw [eventually_nhds_iff]
use {z₀}ᶜ
constructor
· intro y h₁y h₂y
let A := m₁ (h₁g₁ z₀ hz₀) y h₁y
unfold g
rw [← A]
· constructor
· exact isOpen_compl_singleton
· exact h₁z
have h₃g : (h₁g z₀ hz₀).order = 0 := by
unfold g
let B := m₂ (h₁g₁ z₀ hz₀)
let A := (h₁g₁ z₀ hz₀).order_congr B
rw [← A]
rw [h₂g₁]
have h₄g : AnalyticAt g z₀ := by
apply h₂g.analytic
rw [h₃g]
use g
constructor
· exact h₁g
· constructor
· exact h₄g
· constructor
· exact (h₂g.order_eq_zero_iff).mp h₃g
· funext z
by_cases hz : z = z₀
· rw [hz]
simp
by_cases h : h₁f.divisor z₀ = 0
· simp [h]
have h₂h₁ : h₁ = 1 := by
funext w
unfold h₁
simp [h]
have h₃g₁ : g₁ = f := by
unfold g₁
rw [h₂h₁]
simp
have h₄g₁ : StronglyMeromorphicAt g₁ z₀ := by
rwa [h₃g₁]
let A := h₄g₁.makeStronglyMeromorphic_id
unfold g
rw [← A, h₃g₁]
· have : (0 : ) ^ h₁f.divisor z₀ = (0 : ) := by
exact zero_zpow (h₁f.divisor z₀) h
rw [this]
simp
let A := h₂f.order_eq_zero_iff.not
simp at A
rw [← A]
unfold MeromorphicOn.divisor at h
simp [hz₀] at h
exact h.1
· simp
let B := m₁ (h₁g₁ z₀ hz₀) z hz
unfold g
rw [← B]
unfold g₁ h₁
simp [hz]
rw [mul_assoc]
rw [inv_mul_cancel₀]
simp
apply zpow_ne_zero
rwa [sub_ne_zero]
theorem MeromorphicOn.decompose₂
{f : }
{U : Set }
{P : Finset U}
(hf : StronglyMeromorphicOn f U) :
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ) →
∃ g : , (MeromorphicOn g U)
∧ (∀ p : P, AnalyticAt g p)
∧ (∀ p : P, g p ≠ 0)
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
apply Finset.induction (p := fun (P : Finset U) ↦
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ) →
∃ g : , (MeromorphicOn g U)
∧ (∀ p : P, AnalyticAt g p)
∧ (∀ p : P, g p ≠ 0)
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)))
-- case empty
simp
exact hf.meromorphicOn
-- case insert
intro u P hu iHyp
intro hOrder
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀, h₄g₀⟩ := iHyp (fun p hp ↦ hOrder p (Finset.mem_insert_of_mem hp))
have h₀ : AnalyticAt (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) u := by
have : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) = (fun z => ∏ p : P, (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
funext w
simp
rw [this]
apply Finset.analyticAt_prod
intro p hp
apply AnalyticAt.zpow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
by_contra hCon
rw [sub_eq_zero] at hCon
have : p.1 = u := by
exact SetCoe.ext (_root_.id (Eq.symm hCon))
rw [← this] at hu
simp [hp] at hu
have h₁ : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) u ≠ 0 := by
simp only [Finset.prod_apply]
rw [Finset.prod_ne_zero_iff]
intro p hp
apply zpow_ne_zero
by_contra hCon
rw [sub_eq_zero] at hCon
have : p.1 = u := by
exact SetCoe.ext (_root_.id (Eq.symm hCon))
rw [← this] at hu
simp [hp] at hu
have h₅g₀ : StronglyMeromorphicAt g₀ u := by
rw [stronglyMeromorphicAt_of_mul_analytic h₀ h₁]
rw [← h₄g₀]
exact hf u u.2
have h₆g₀ : (h₁g₀ u u.2).order ≠ := by
by_contra hCon
let A := (h₁g₀ u u.2).order_mul h₀.meromorphicAt
simp_rw [← h₄g₀, hCon] at A
simp at A
let B := hOrder u (Finset.mem_insert_self u P)
tauto
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := h₁g₀.decompose₁ h₅g₀ h₆g₀ u.2
use g
· constructor
· exact h₁g
· constructor
· intro ⟨v₁, v₂⟩
simp
simp at v₂
rcases v₂ with hv|hv
· rwa [hv]
· let A := h₂g₀ ⟨v₁, hv⟩
rw [h₄g] at A
rw [← analyticAt_of_mul_analytic] at A
simp at A
exact A
--
simp
apply AnalyticAt.zpow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
by_contra hCon
rw [sub_eq_zero] at hCon
have : v₁ = u := by
exact SetCoe.ext hCon
rw [this] at hv
tauto
--
apply zpow_ne_zero
simp
by_contra hCon
rw [sub_eq_zero] at hCon
have : v₁ = u := by
exact SetCoe.ext hCon
rw [this] at hv
tauto
· constructor
· intro ⟨v₁, v₂⟩
simp
simp at v₂
rcases v₂ with hv|hv
· rwa [hv]
· by_contra hCon
let A := h₃g₀ ⟨v₁,hv⟩
rw [h₄g] at A
simp at A
tauto
· conv =>
left
rw [h₄g₀, h₄g]
simp
rw [mul_assoc]
congr
rw [Finset.prod_insert]
simp
congr
have : (hf u u.2).meromorphicAt.order = (h₁g₀ u u.2).order := by
have h₅g₀ : f =ᶠ[𝓝 u.1] (g₀ * ∏ p : P, fun z => (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
exact Eq.eventuallyEq h₄g₀
have h₆g₀ : f =ᶠ[𝓝[≠] u.1] (g₀ * ∏ p : P, fun z => (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
exact eventuallyEq_nhdsWithin_of_eqOn fun ⦃x⦄ a => congrFun h₄g₀ x
rw [(hf u u.2).meromorphicAt.order_congr h₆g₀]
let C := (h₁g₀ u u.2).order_mul h₀.meromorphicAt
rw [C]
let D := h₀.order_eq_zero_iff.2 h₁
let E := h₀.meromorphicAt_order
rw [E, D]
simp
have : hf.meromorphicOn.divisor u = h₁g₀.divisor u := by
unfold MeromorphicOn.divisor
simp
rw [this]
rw [this]
--
simpa
theorem MeromorphicOn.decompose₃'
{f : }
{U : Set }
(h₁U : IsCompact U)
(h₂U : IsConnected U)
(h₁f : StronglyMeromorphicOn f U)
(h₂f : ∃ u : U, f u ≠ 0) :
∃ g : , (MeromorphicOn g U)
∧ (AnalyticOnNhd g U)
∧ (∀ u : U, g u ≠ 0)
∧ (f = g * ∏ᶠ u, fun z ↦ (z - u) ^ (h₁f.meromorphicOn.divisor u)) := by
have h₃f : ∀ u : U, (h₁f u u.2).meromorphicAt.order ≠ := MeromorphicOn.order_ne_top h₂U h₁f h₂f
have h₄f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := h₁f.meromorphicOn.divisor.finiteSupport h₁U
let d := - h₁f.meromorphicOn.divisor.toFun
have h₁d : d.support = (Function.support h₁f.meromorphicOn.divisor) := by
ext x
unfold d
simp
let h₁ := ∏ᶠ u, fun z ↦ (z - u) ^ (d u)
have h₁h₁ : StronglyMeromorphicOn h₁ U := by
intro z hz
exact stronglyMeromorphicOn_ratlPolynomial₃ d z trivial
have h₂h₁ : h₁h₁.meromorphicOn.divisor = d := by
apply stronglyMeromorphicOn_divisor_ratlPolynomial_U
rwa [h₁d]
--
rw [h₁d]
exact (StronglyMeromorphicOn.meromorphicOn h₁f).divisor.supportInU
have h₃h₁ : ∀ (z : ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order ≠ := by
intro z hz
apply stronglyMeromorphicOn_ratlPolynomial₃order
have h₄h₁ : ∀ (z : ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order = d z := by
intro z hz
rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁]
rwa [h₁d]
let g' := f * h₁
have h₁g' : MeromorphicOn g' U := h₁f.meromorphicOn.mul h₁h₁.meromorphicOn
have h₂g' : h₁g'.divisor.toFun = 0 := by
rw [MeromorphicOn.divisor_mul h₁f.meromorphicOn (fun z hz ↦ h₃f ⟨z, hz⟩) h₁h₁.meromorphicOn h₃h₁]
rw [h₂h₁]
unfold d
simp
have h₃g' : ∀ u : U, (h₁g' u.1 u.2).order = 0 := by
intro u
rw [(h₁f u.1 u.2).meromorphicAt.order_mul (h₁h₁ u.1 u.2).meromorphicAt]
rw [h₄h₁]
unfold d
unfold MeromorphicOn.divisor
simp
have : (h₁f u.1 u.2).meromorphicAt.order = WithTop.untop' 0 (h₁f u.1 u.2).meromorphicAt.order := by
rw [eq_comm]
let A := h₃f u
exact untop'_of_ne_top A
rw [this]
simp
rw [← WithTop.LinearOrderedAddCommGroup.coe_neg]
rw [← WithTop.coe_add]
simp
exact u.2
let g := h₁g'.makeStronglyMeromorphicOn
have h₁g : StronglyMeromorphicOn g U := stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁g'
have h₂g : h₁g.meromorphicOn.divisor.toFun = 0 := by
rw [← MeromorphicOn.divisor_of_makeStronglyMeromorphicOn]
rw [h₂g']
have h₃g : AnalyticOnNhd g U := by
apply StronglyMeromorphicOn.analyticOnNhd
rw [h₂g]
simp
assumption
have h₄g : ∀ u : U, g u ≠ 0 := by
intro u
rw [← (h₁g u.1 u.2).order_eq_zero_iff]
rw [makeStronglyMeromorphicOn_changeOrder]
let A := h₃g' u
exact A
exact u.2
use g
constructor
· exact StronglyMeromorphicOn.meromorphicOn h₁g
· constructor
· exact h₃g
· constructor
· exact h₄g
· have t₀ : StronglyMeromorphicOn (g * ∏ᶠ (u : ), fun z => (z - u) ^ (h₁f.meromorphicOn.divisor u)) U := by
apply stronglyMeromorphicOn_of_mul_analytic' h₃g h₄g
apply stronglyMeromorphicOn_ratlPolynomial₃U
funext z
by_cases hz : z ∈ U
· apply Filter.EventuallyEq.eq_of_nhds
apply StronglyMeromorphicAt.localIdentity (h₁f z hz) (t₀ z hz)
have h₅g : g =ᶠ[𝓝[≠] z] g' := makeStronglyMeromorphicOn_changeDiscrete h₁g' hz
have Y' : (g' * ∏ᶠ (u : ), fun z => (z - u) ^ (h₁f.meromorphicOn.divisor u)) =ᶠ[𝓝[≠] z] g * ∏ᶠ (u : ), fun z => (z - u) ^ (h₁f.meromorphicOn.divisor u) := by
apply Filter.EventuallyEq.symm
exact Filter.EventuallyEq.mul h₅g (by simp)
apply Filter.EventuallyEq.trans _ Y'
unfold g'
unfold h₁
let A := h₁f.meromorphicOn.divisor.locallyFiniteInU z hz
let B := eventually_nhdsWithin_iff.1 A
obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 B
apply eventually_nhdsWithin_iff.2
rw [eventually_nhds_iff]
use t
constructor
· intro y h₁y h₂y
let C := h₁t y h₁y h₂y
rw [mul_assoc]
simp
have : (finprod (fun u z => (z - u) ^ d u) y * finprod (fun u z => (z - u) ^ (h₁f.meromorphicOn.divisor u)) y) = 1 := by
have t₀ : (Function.mulSupport fun u z => (z - u) ^ d u).Finite := by
rwa [ratlPoly_mulsupport, h₁d]
rw [finprod_eq_prod _ t₀]
have t₁ : (Function.mulSupport fun u z => (z - u) ^ h₁f.meromorphicOn.divisor u).Finite := by
rwa [ratlPoly_mulsupport]
rw [finprod_eq_prod _ t₁]
have : (Function.mulSupport fun u z => (z - u) ^ d u) = (Function.mulSupport fun u z => (z - u) ^ h₁f.meromorphicOn.divisor u) := by
rw [ratlPoly_mulsupport]
rw [ratlPoly_mulsupport]
unfold d
simp
have : t₀.toFinset = t₁.toFinset := by congr
rw [this]
simp
rw [← Finset.prod_mul_distrib]
apply Finset.prod_eq_one
intro x hx
apply zpow_neg_mul_zpow_self
have : y ∉ t₁.toFinset := by
simp
simp at C
rw [C]
simp
tauto
by_contra H
rw [sub_eq_zero] at H
rw [H] at this
tauto
rw [this]
simp
· exact ⟨h₂t, h₃t⟩
· simp
have : g z = g' z := by
unfold g
unfold MeromorphicOn.makeStronglyMeromorphicOn
simp [hz]
rw [this]
unfold g'
unfold h₁
simp
rw [mul_assoc]
nth_rw 1 [← mul_one (f z)]
congr
have t₀ : (Function.mulSupport fun u z => (z - u) ^ d u).Finite := by
rwa [ratlPoly_mulsupport, h₁d]
rw [finprod_eq_prod _ t₀]
have t₁ : (Function.mulSupport fun u z => (z - u) ^ h₁f.meromorphicOn.divisor u).Finite := by
rwa [ratlPoly_mulsupport]
rw [finprod_eq_prod _ t₁]
have : (Function.mulSupport fun u z => (z - u) ^ d u) = (Function.mulSupport fun u z => (z - u) ^ h₁f.meromorphicOn.divisor u) := by
rw [ratlPoly_mulsupport]
rw [ratlPoly_mulsupport]
unfold d
simp
have : t₀.toFinset = t₁.toFinset := by congr
rw [this]
simp
rw [← Finset.prod_mul_distrib]
rw [eq_comm]
apply Finset.prod_eq_one
intro x hx
apply zpow_neg_mul_zpow_self
have : z ∉ t₁.toFinset := by
simp
have : h₁f.meromorphicOn.divisor z = 0 := by
let A := h₁f.meromorphicOn.divisor.supportInU
simp at A
by_contra H
let B := A z H
tauto
rw [this]
simp
rfl
by_contra H
rw [sub_eq_zero] at H
rw [H] at this
tauto
theorem MeromorphicOn.decompose_log
{f : }
{U : Set }
(h₁U : IsCompact U)
(h₂U : IsConnected U)
(h₁f : StronglyMeromorphicOn f U)
(h₂f : ∃ u : U, f u ≠ 0) :
∃ g : , (MeromorphicOn g U)
∧ (AnalyticOnNhd g U)
∧ (∀ u : U, g u ≠ 0)
∧ (fun z ↦ log ‖f z‖) =ᶠ[Filter.codiscreteWithin U] fun z ↦ log ‖g z‖ + ∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log ‖z - s‖ := by
have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by
exact Divisor.finiteSupport h₁U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
have hSupp₁ {z : } : (fun s ↦ (h₁f.meromorphicOn.divisor s) * log ‖z - s‖).support ⊆ h₃f.toFinset := by
intro x
contrapose
simp; tauto
simp_rw [finsum_eq_sum_of_support_subset _ hSupp₁]
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := MeromorphicOn.decompose₃' h₁U h₂U h₁f h₂f
have hSupp₂ {z : } : ( fun (u : ) ↦ (fun (z : ) ↦ (z - u) ^ (h₁f.meromorphicOn.divisor u)) ).mulSupport ⊆ h₃f.toFinset := by
intro x
contrapose
simp
intro hx
rw [hx]
simp; tauto
rw [finprod_eq_prod_of_mulSupport_subset _ hSupp₂] at h₄g
use g
simp only [h₁g, h₂g, h₃g, ne_eq, true_and, not_false_eq_true, implies_true]
rw [Filter.eventuallyEq_iff_exists_mem]
use {z | f z ≠ 0}
constructor
· sorry
· intro z hz
nth_rw 1 [h₄g]
simp
rw [log_mul, log_prod]
congr
ext u
rw [log_zpow]
intro x hx
simp at hx
simp
apply zpow_ne_zero
simp
simp at hz
contrapose
simp
repeat
sorry