working...
This commit is contained in:
		| @@ -63,5 +63,7 @@ theorem MeromorphicOn.decompose | ||||
|         sorry | ||||
|       have t₁ : ∀ᶠ x in 𝓝[≠] z, AnalyticAt ℂ (fun z => ∏ᶠ (p : ℂ), (z - p) ^ h₁f.divisor p * g z) x := by | ||||
|         sorry | ||||
|       apply Filter.EventuallyEq.eq_of_nhds | ||||
|       apply StronglyMeromorphicAt.localIdentity | ||||
|  | ||||
|       sorry | ||||
|   | ||||
| @@ -169,6 +169,7 @@ theorem StronglyMeromorphicAt.order_eq_zero_iff | ||||
|             exact nhdsWithin_le_nhds | ||||
|       exact this | ||||
|  | ||||
|  | ||||
| theorem StronglyMeromorphicAt.localIdentity | ||||
|   {f g : ℂ → ℂ} | ||||
|   {z₀ : ℂ} | ||||
|   | ||||
| @@ -45,32 +45,6 @@ theorem AnalyticOn.stronglyMeromorphicOn | ||||
|   exact h₁f z hz | ||||
|  | ||||
|  | ||||
| /- Strongly meromorphic functions on compact, preconnected sets are quotients of analytic functions -/ | ||||
| theorem StronglyMeromorphicOn_finite | ||||
|   {f : ℂ → ℂ} | ||||
|   {U : Set ℂ} | ||||
|   (h₁U : IsCompact U) | ||||
|   (h₂U : IsPreconnected U) | ||||
|   (h₁f : StronglyMeromorphicOn f U) | ||||
|   (h₂f : ∃ z ∈ U, f z ≠ 0) : | ||||
|   Set.Finite {z ∈ U | f z = 0} := by | ||||
|  | ||||
|   sorry | ||||
|  | ||||
|  | ||||
| /- Strongly meromorphic functions on compact, preconnected sets are quotients of analytic functions -/ | ||||
| theorem StronglyMeromorphicOn_quotient | ||||
|   {f : ℂ → ℂ} | ||||
|   {U : Set ℂ} | ||||
|   (h₁U : IsCompact U) | ||||
|   (h₂U : IsPreconnected U) | ||||
|   (h₁f : StronglyMeromorphicOn f U) | ||||
|   (h₂f : ∃ z ∈ U, f z ≠ 0) : | ||||
|   ∃ a b : ℂ → ℂ, (AnalyticOnNhd ℂ a U) ∧ (AnalyticOnNhd ℂ b U) ∧ (∀ z ∈ U, a z ≠ 0 ∨ b z ≠ 0) ∧ f = a / b := by | ||||
|  | ||||
|   sorry | ||||
|  | ||||
|  | ||||
| /- Make strongly MeromorphicAt -/ | ||||
| noncomputable def MeromorphicOn.makeStronglyMeromorphicOn | ||||
|   {f : ℂ → ℂ} | ||||
| @@ -105,6 +79,14 @@ theorem makeStronglyMeromorphicOn_changeDiscrete | ||||
|     · simp [h₂v] | ||||
|  | ||||
|  | ||||
| theorem StronglyMeromorphicOn_of_makeStronglyMeromorphic | ||||
|   {f : ℂ → ℂ} | ||||
|   {z₀ : ℂ} | ||||
|   (hf : MeromorphicOn f U) : | ||||
|   StronglyMeromorphicOn hf.makeStronglyMeromorphicOn U := by | ||||
|   sorry | ||||
|  | ||||
|  | ||||
| theorem makeStronglyMeromorphicOn_changeDiscrete' | ||||
|   {f : ℂ → ℂ} | ||||
|   {U : Set ℂ} | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus