diff --git a/Nevanlinna/meromorphicOn_decompose.lean b/Nevanlinna/meromorphicOn_decompose.lean index 91ff55f..b48144d 100644 --- a/Nevanlinna/meromorphicOn_decompose.lean +++ b/Nevanlinna/meromorphicOn_decompose.lean @@ -63,5 +63,7 @@ theorem MeromorphicOn.decompose sorry have tโ‚ : โˆ€แถ  x in ๐“[โ‰ ] z, AnalyticAt โ„‚ (fun z => โˆแถ  (p : โ„‚), (z - p) ^ hโ‚f.divisor p * g z) x := by sorry + apply Filter.EventuallyEq.eq_of_nhds + apply StronglyMeromorphicAt.localIdentity sorry diff --git a/Nevanlinna/stronglyMeromorphicAt.lean b/Nevanlinna/stronglyMeromorphicAt.lean index e320453..1a41e1d 100644 --- a/Nevanlinna/stronglyMeromorphicAt.lean +++ b/Nevanlinna/stronglyMeromorphicAt.lean @@ -169,6 +169,7 @@ theorem StronglyMeromorphicAt.order_eq_zero_iff exact nhdsWithin_le_nhds exact this + theorem StronglyMeromorphicAt.localIdentity {f g : โ„‚ โ†’ โ„‚} {zโ‚€ : โ„‚} diff --git a/Nevanlinna/stronglyMeromorphicOn.lean b/Nevanlinna/stronglyMeromorphicOn.lean index 0aaa316..5fb392f 100644 --- a/Nevanlinna/stronglyMeromorphicOn.lean +++ b/Nevanlinna/stronglyMeromorphicOn.lean @@ -45,32 +45,6 @@ theorem AnalyticOn.stronglyMeromorphicOn exact hโ‚f z hz -/- Strongly meromorphic functions on compact, preconnected sets are quotients of analytic functions -/ -theorem StronglyMeromorphicOn_finite - {f : โ„‚ โ†’ โ„‚} - {U : Set โ„‚} - (hโ‚U : IsCompact U) - (hโ‚‚U : IsPreconnected U) - (hโ‚f : StronglyMeromorphicOn f U) - (hโ‚‚f : โˆƒ z โˆˆ U, f z โ‰  0) : - Set.Finite {z โˆˆ U | f z = 0} := by - - sorry - - -/- Strongly meromorphic functions on compact, preconnected sets are quotients of analytic functions -/ -theorem StronglyMeromorphicOn_quotient - {f : โ„‚ โ†’ โ„‚} - {U : Set โ„‚} - (hโ‚U : IsCompact U) - (hโ‚‚U : IsPreconnected U) - (hโ‚f : StronglyMeromorphicOn f U) - (hโ‚‚f : โˆƒ z โˆˆ U, f z โ‰  0) : - โˆƒ a b : โ„‚ โ†’ โ„‚, (AnalyticOnNhd โ„‚ a U) โˆง (AnalyticOnNhd โ„‚ b U) โˆง (โˆ€ z โˆˆ U, a z โ‰  0 โˆจ b z โ‰  0) โˆง f = a / b := by - - sorry - - /- Make strongly MeromorphicAt -/ noncomputable def MeromorphicOn.makeStronglyMeromorphicOn {f : โ„‚ โ†’ โ„‚} @@ -105,6 +79,14 @@ theorem makeStronglyMeromorphicOn_changeDiscrete ยท simp [hโ‚‚v] +theorem StronglyMeromorphicOn_of_makeStronglyMeromorphic + {f : โ„‚ โ†’ โ„‚} + {zโ‚€ : โ„‚} + (hf : MeromorphicOn f U) : + StronglyMeromorphicOn hf.makeStronglyMeromorphicOn U := by + sorry + + theorem makeStronglyMeromorphicOn_changeDiscrete' {f : โ„‚ โ†’ โ„‚} {U : Set โ„‚}