working...
This commit is contained in:
parent
c6caffc53d
commit
15fa18c52f
|
@ -63,5 +63,7 @@ theorem MeromorphicOn.decompose
|
||||||
sorry
|
sorry
|
||||||
have t₁ : ∀ᶠ x in 𝓝[≠] z, AnalyticAt ℂ (fun z => ∏ᶠ (p : ℂ), (z - p) ^ h₁f.divisor p * g z) x := by
|
have t₁ : ∀ᶠ x in 𝓝[≠] z, AnalyticAt ℂ (fun z => ∏ᶠ (p : ℂ), (z - p) ^ h₁f.divisor p * g z) x := by
|
||||||
sorry
|
sorry
|
||||||
|
apply Filter.EventuallyEq.eq_of_nhds
|
||||||
|
apply StronglyMeromorphicAt.localIdentity
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
|
|
@ -169,6 +169,7 @@ theorem StronglyMeromorphicAt.order_eq_zero_iff
|
||||||
exact nhdsWithin_le_nhds
|
exact nhdsWithin_le_nhds
|
||||||
exact this
|
exact this
|
||||||
|
|
||||||
|
|
||||||
theorem StronglyMeromorphicAt.localIdentity
|
theorem StronglyMeromorphicAt.localIdentity
|
||||||
{f g : ℂ → ℂ}
|
{f g : ℂ → ℂ}
|
||||||
{z₀ : ℂ}
|
{z₀ : ℂ}
|
||||||
|
|
|
@ -45,32 +45,6 @@ theorem AnalyticOn.stronglyMeromorphicOn
|
||||||
exact h₁f z hz
|
exact h₁f z hz
|
||||||
|
|
||||||
|
|
||||||
/- Strongly meromorphic functions on compact, preconnected sets are quotients of analytic functions -/
|
|
||||||
theorem StronglyMeromorphicOn_finite
|
|
||||||
{f : ℂ → ℂ}
|
|
||||||
{U : Set ℂ}
|
|
||||||
(h₁U : IsCompact U)
|
|
||||||
(h₂U : IsPreconnected U)
|
|
||||||
(h₁f : StronglyMeromorphicOn f U)
|
|
||||||
(h₂f : ∃ z ∈ U, f z ≠ 0) :
|
|
||||||
Set.Finite {z ∈ U | f z = 0} := by
|
|
||||||
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
/- Strongly meromorphic functions on compact, preconnected sets are quotients of analytic functions -/
|
|
||||||
theorem StronglyMeromorphicOn_quotient
|
|
||||||
{f : ℂ → ℂ}
|
|
||||||
{U : Set ℂ}
|
|
||||||
(h₁U : IsCompact U)
|
|
||||||
(h₂U : IsPreconnected U)
|
|
||||||
(h₁f : StronglyMeromorphicOn f U)
|
|
||||||
(h₂f : ∃ z ∈ U, f z ≠ 0) :
|
|
||||||
∃ a b : ℂ → ℂ, (AnalyticOnNhd ℂ a U) ∧ (AnalyticOnNhd ℂ b U) ∧ (∀ z ∈ U, a z ≠ 0 ∨ b z ≠ 0) ∧ f = a / b := by
|
|
||||||
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
/- Make strongly MeromorphicAt -/
|
/- Make strongly MeromorphicAt -/
|
||||||
noncomputable def MeromorphicOn.makeStronglyMeromorphicOn
|
noncomputable def MeromorphicOn.makeStronglyMeromorphicOn
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
|
@ -105,6 +79,14 @@ theorem makeStronglyMeromorphicOn_changeDiscrete
|
||||||
· simp [h₂v]
|
· simp [h₂v]
|
||||||
|
|
||||||
|
|
||||||
|
theorem StronglyMeromorphicOn_of_makeStronglyMeromorphic
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{z₀ : ℂ}
|
||||||
|
(hf : MeromorphicOn f U) :
|
||||||
|
StronglyMeromorphicOn hf.makeStronglyMeromorphicOn U := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
theorem makeStronglyMeromorphicOn_changeDiscrete'
|
theorem makeStronglyMeromorphicOn_changeDiscrete'
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
|
|
Loading…
Reference in New Issue