Working…
This commit is contained in:
parent
6610fd49b0
commit
12f0543f47
|
@ -3,6 +3,18 @@ import Mathlib.Analysis.Complex.Basic
|
||||||
import Mathlib.Analysis.Analytic.Linear
|
import Mathlib.Analysis.Analytic.Linear
|
||||||
|
|
||||||
|
|
||||||
|
theorem AnalyticAt.order_neq_top_iff
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{z₀ : ℂ}
|
||||||
|
(hf : AnalyticAt ℂ f z₀) :
|
||||||
|
hf.order ≠ ⊤ ↔ ∃ (g : ℂ → ℂ), AnalyticAt ℂ g z₀ ∧ g z₀ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ (hf.order.toNat) • g z := by
|
||||||
|
rw [← hf.order_eq_nat_iff]
|
||||||
|
constructor
|
||||||
|
· intro h₁f
|
||||||
|
exact Eq.symm (ENat.coe_toNat h₁f)
|
||||||
|
· intro h₁f
|
||||||
|
exact ENat.coe_toNat_eq_self.mp (id (Eq.symm h₁f))
|
||||||
|
|
||||||
|
|
||||||
theorem AnalyticAt.order_mul
|
theorem AnalyticAt.order_mul
|
||||||
{f₁ f₂ : ℂ → ℂ}
|
{f₁ f₂ : ℂ → ℂ}
|
||||||
|
|
|
@ -0,0 +1,129 @@
|
||||||
|
import Nevanlinna.analyticAt
|
||||||
|
|
||||||
|
|
||||||
|
structure Divisor where
|
||||||
|
toFun : ℂ → ℤ
|
||||||
|
discreteSupport : DiscreteTopology (Function.support toFun)
|
||||||
|
|
||||||
|
instance : CoeFun Divisor (fun _ ↦ ℂ → ℤ) where
|
||||||
|
coe := Divisor.toFun
|
||||||
|
attribute [coe] Divisor.toFun
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
noncomputable def Divisor.deg
|
||||||
|
(D : Divisor) : ℤ := ∑ᶠ z, D z
|
||||||
|
|
||||||
|
noncomputable def Divisor.n_trunk
|
||||||
|
(D : Divisor) : ℤ → ℝ → ℤ := fun k r ↦ ∑ᶠ z ∈ Metric.ball 0 r, min k (D z)
|
||||||
|
|
||||||
|
noncomputable def Divisor.n
|
||||||
|
(D : Divisor) : ℝ → ℤ := fun r ↦ ∑ᶠ z ∈ Metric.ball 0 r, D z
|
||||||
|
|
||||||
|
noncomputable def Divisor.N_trunk
|
||||||
|
(D : Divisor) : ℤ → ℝ → ℝ := fun k r ↦ ∫ (t : ℝ) in (1)..r, (D.n_trunk k t) / t
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
noncomputable def AnalyticOn.zeroDivisor
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
(hf : AnalyticOn ℂ f U) :
|
||||||
|
Divisor where
|
||||||
|
|
||||||
|
toFun := by
|
||||||
|
intro z
|
||||||
|
if hz : z ∈ U then
|
||||||
|
exact ((hf z hz).order.toNat : ℤ)
|
||||||
|
else
|
||||||
|
exact 0
|
||||||
|
|
||||||
|
discreteSupport := by
|
||||||
|
simp_rw [← singletons_open_iff_discrete]
|
||||||
|
simp_rw [Metric.isOpen_singleton_iff]
|
||||||
|
simp
|
||||||
|
|
||||||
|
-- simp only [dite_eq_ite, gt_iff_lt, Subtype.forall, Function.mem_support, ne_eq, ite_eq_else, Classical.not_imp, not_or, Subtype.mk.injEq]
|
||||||
|
|
||||||
|
intro a ha ⟨h₁a, h₂a⟩
|
||||||
|
obtain ⟨g, h₁g, h₂g, h₃g⟩ := (AnalyticAt.order_neq_top_iff (hf a ha)).1 h₂a
|
||||||
|
rw [Metric.eventually_nhds_iff_ball] at h₃g
|
||||||
|
|
||||||
|
have : ∃ ε > 0, ∀ y ∈ Metric.ball (↑a) ε, g y ≠ 0 := by
|
||||||
|
have h₄g : ContinuousAt g a :=
|
||||||
|
AnalyticAt.continuousAt h₁g
|
||||||
|
have : {0}ᶜ ∈ nhds (g a) := by
|
||||||
|
exact compl_singleton_mem_nhds_iff.mpr h₂g
|
||||||
|
let F := h₄g.preimage_mem_nhds this
|
||||||
|
rw [Metric.mem_nhds_iff] at F
|
||||||
|
obtain ⟨ε, h₁ε, h₂ε⟩ := F
|
||||||
|
use ε
|
||||||
|
constructor; exact h₁ε
|
||||||
|
intro y hy
|
||||||
|
let G := h₂ε hy
|
||||||
|
simp at G
|
||||||
|
exact G
|
||||||
|
|
||||||
|
obtain ⟨ε₁, h₁ε₁⟩ := this
|
||||||
|
obtain ⟨ε₂, h₁ε₂, h₂ε₂⟩ := h₃g
|
||||||
|
use min ε₁ ε₂
|
||||||
|
constructor
|
||||||
|
· have : 0 < min ε₁ ε₂ := by
|
||||||
|
rw [lt_min_iff]
|
||||||
|
exact And.imp_right (fun _ => h₁ε₂) h₁ε₁
|
||||||
|
exact this
|
||||||
|
|
||||||
|
intro y hy ⟨h₁y, h₂y⟩ h₃
|
||||||
|
|
||||||
|
have h'₂y : ↑y ∈ Metric.ball (↑a) ε₂ := by
|
||||||
|
simp
|
||||||
|
calc dist y a
|
||||||
|
_ < min ε₁ ε₂ := by assumption
|
||||||
|
_ ≤ ε₂ := by exact min_le_right ε₁ ε₂
|
||||||
|
|
||||||
|
have h₃y : ↑y ∈ Metric.ball (↑a) ε₁ := by
|
||||||
|
simp
|
||||||
|
calc dist y a
|
||||||
|
_ < min ε₁ ε₂ := by assumption
|
||||||
|
_ ≤ ε₁ := by exact min_le_left ε₁ ε₂
|
||||||
|
|
||||||
|
have F := h₂ε₂ y h'₂y
|
||||||
|
have : f y = 0 := by
|
||||||
|
rw [AnalyticAt.order_eq_zero_iff (hf y hy)] at h₁y
|
||||||
|
tauto
|
||||||
|
rw [this] at F
|
||||||
|
simp at F
|
||||||
|
|
||||||
|
have : g y ≠ 0 := by
|
||||||
|
exact h₁ε₁.2 y h₃y
|
||||||
|
simp [this] at F
|
||||||
|
rw [sub_eq_zero] at F
|
||||||
|
tauto
|
||||||
|
|
||||||
|
|
||||||
|
theorem AnalyticOn.support_of_zeroDivisor
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
(hf : AnalyticOn ℂ f U) :
|
||||||
|
Function.support hf.zeroDivisor ⊆ U := by
|
||||||
|
|
||||||
|
intro z
|
||||||
|
contrapose
|
||||||
|
intro hz
|
||||||
|
dsimp [AnalyticOn.zeroDivisor]
|
||||||
|
simp
|
||||||
|
tauto
|
||||||
|
|
||||||
|
|
||||||
|
theorem AnalyticOn.support_of_zeroDivisor₂
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
(hf : AnalyticOn ℂ f U) :
|
||||||
|
Function.support hf.zeroDivisor ⊆ f⁻¹' {0} := by
|
||||||
|
|
||||||
|
simp
|
||||||
|
intro z hz
|
||||||
|
dsimp [AnalyticOn.zeroDivisor]
|
||||||
|
simp
|
||||||
|
tauto
|
|
@ -1,15 +1,19 @@
|
||||||
|
import Mathlib.Analysis.Analytic.Meromorphic
|
||||||
import Nevanlinna.holomorphic_JensenFormula
|
import Nevanlinna.holomorphic_JensenFormula
|
||||||
|
|
||||||
open Real
|
open Real
|
||||||
|
|
||||||
variable {f : ℂ → ℂ}
|
variable (f : ℂ → ℂ)
|
||||||
variable {h₁f : AnalyticOn ℂ f ⊤}
|
variable {h₁f : MeromorphicOn f ⊤}
|
||||||
variable {h₂f : f 0 ≠ 0}
|
variable {h₂f : f 0 ≠ 0}
|
||||||
|
|
||||||
noncomputable def unintegratedCounting : ℝ → ℕ := by
|
|
||||||
|
|
||||||
|
noncomputable def Nevanlinna.n : ℝ → ℤ := by
|
||||||
intro r
|
intro r
|
||||||
let A := h₁f.mono (by tauto : Metric.closedBall (0 : ℂ) r ⊆ ⊤)
|
have : MeromorphicAt f z := by
|
||||||
exact ∑ᶠ z, (A.order z).toNat
|
exact h₁f (sorryAx ℂ true) trivial
|
||||||
|
exact ∑ᶠ z ∈ Metric.ball (0 : ℂ) r, (h₁f z trivial).order
|
||||||
|
|
||||||
noncomputable def integratedCounting : ℝ → ℝ := by
|
noncomputable def integratedCounting : ℝ → ℝ := by
|
||||||
intro r
|
intro r
|
||||||
|
|
Loading…
Reference in New Issue