nevanlinna/Nevanlinna/divisor.lean

130 lines
3.3 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Nevanlinna.analyticAt
structure Divisor where
toFun :
discreteSupport : DiscreteTopology (Function.support toFun)
instance : CoeFun Divisor (fun _ ↦ ) where
coe := Divisor.toFun
attribute [coe] Divisor.toFun
noncomputable def Divisor.deg
(D : Divisor) : := ∑ᶠ z, D z
noncomputable def Divisor.n_trunk
(D : Divisor) : := fun k r ↦ ∑ᶠ z ∈ Metric.ball 0 r, min k (D z)
noncomputable def Divisor.n
(D : Divisor) : := fun r ↦ ∑ᶠ z ∈ Metric.ball 0 r, D z
noncomputable def Divisor.N_trunk
(D : Divisor) : := fun k r ↦ ∫ (t : ) in (1)..r, (D.n_trunk k t) / t
noncomputable def AnalyticOn.zeroDivisor
{f : }
{U : Set }
(hf : AnalyticOn f U) :
Divisor where
toFun := by
intro z
if hz : z ∈ U then
exact ((hf z hz).order.toNat : )
else
exact 0
discreteSupport := by
simp_rw [← singletons_open_iff_discrete]
simp_rw [Metric.isOpen_singleton_iff]
simp
-- simp only [dite_eq_ite, gt_iff_lt, Subtype.forall, Function.mem_support, ne_eq, ite_eq_else, Classical.not_imp, not_or, Subtype.mk.injEq]
intro a ha ⟨h₁a, h₂a⟩
obtain ⟨g, h₁g, h₂g, h₃g⟩ := (AnalyticAt.order_neq_top_iff (hf a ha)).1 h₂a
rw [Metric.eventually_nhds_iff_ball] at h₃g
have : ∃ ε > 0, ∀ y ∈ Metric.ball (↑a) ε, g y ≠ 0 := by
have h₄g : ContinuousAt g a :=
AnalyticAt.continuousAt h₁g
have : {0}ᶜ ∈ nhds (g a) := by
exact compl_singleton_mem_nhds_iff.mpr h₂g
let F := h₄g.preimage_mem_nhds this
rw [Metric.mem_nhds_iff] at F
obtain ⟨ε, h₁ε, h₂ε⟩ := F
use ε
constructor; exact h₁ε
intro y hy
let G := h₂ε hy
simp at G
exact G
obtain ⟨ε₁, h₁ε₁⟩ := this
obtain ⟨ε₂, h₁ε₂, h₂ε₂⟩ := h₃g
use min ε₁ ε₂
constructor
· have : 0 < min ε₁ ε₂ := by
rw [lt_min_iff]
exact And.imp_right (fun _ => h₁ε₂) h₁ε₁
exact this
intro y hy ⟨h₁y, h₂y⟩ h₃
have h'₂y : ↑y ∈ Metric.ball (↑a) ε₂ := by
simp
calc dist y a
_ < min ε₁ ε₂ := by assumption
_ ≤ ε₂ := by exact min_le_right ε₁ ε₂
have h₃y : ↑y ∈ Metric.ball (↑a) ε₁ := by
simp
calc dist y a
_ < min ε₁ ε₂ := by assumption
_ ≤ ε₁ := by exact min_le_left ε₁ ε₂
have F := h₂ε₂ y h'₂y
have : f y = 0 := by
rw [AnalyticAt.order_eq_zero_iff (hf y hy)] at h₁y
tauto
rw [this] at F
simp at F
have : g y ≠ 0 := by
exact h₁ε₁.2 y h₃y
simp [this] at F
rw [sub_eq_zero] at F
tauto
theorem AnalyticOn.support_of_zeroDivisor
{f : }
{U : Set }
(hf : AnalyticOn f U) :
Function.support hf.zeroDivisor ⊆ U := by
intro z
contrapose
intro hz
dsimp [AnalyticOn.zeroDivisor]
simp
tauto
theorem AnalyticOn.support_of_zeroDivisor₂
{f : }
{U : Set }
(hf : AnalyticOn f U) :
Function.support hf.zeroDivisor ⊆ f⁻¹' {0} := by
simp
intro z hz
dsimp [AnalyticOn.zeroDivisor]
simp
tauto