Update divisor.lean
This commit is contained in:
parent
12f0543f47
commit
12d81cb0a9
|
@ -23,7 +23,13 @@ noncomputable def Divisor.n
|
||||||
noncomputable def Divisor.N_trunk
|
noncomputable def Divisor.N_trunk
|
||||||
(D : Divisor) : ℤ → ℝ → ℝ := fun k r ↦ ∫ (t : ℝ) in (1)..r, (D.n_trunk k t) / t
|
(D : Divisor) : ℤ → ℝ → ℝ := fun k r ↦ ∫ (t : ℝ) in (1)..r, (D.n_trunk k t) / t
|
||||||
|
|
||||||
|
theorem Divisor.compactSupport
|
||||||
|
(D : Divisor)
|
||||||
|
{U : Set ℂ}
|
||||||
|
(h₁U : IsCompact U)
|
||||||
|
(h₂U : Function.support D ⊆ U) :
|
||||||
|
Set.Finite (Function.support D) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
noncomputable def AnalyticOn.zeroDivisor
|
noncomputable def AnalyticOn.zeroDivisor
|
||||||
|
@ -122,8 +128,12 @@ theorem AnalyticOn.support_of_zeroDivisor₂
|
||||||
(hf : AnalyticOn ℂ f U) :
|
(hf : AnalyticOn ℂ f U) :
|
||||||
Function.support hf.zeroDivisor ⊆ f⁻¹' {0} := by
|
Function.support hf.zeroDivisor ⊆ f⁻¹' {0} := by
|
||||||
|
|
||||||
simp
|
|
||||||
intro z hz
|
intro z hz
|
||||||
dsimp [AnalyticOn.zeroDivisor]
|
dsimp [AnalyticOn.zeroDivisor] at hz
|
||||||
|
have t₀ := hf.support_of_zeroDivisor hz
|
||||||
|
simp [hf.support_of_zeroDivisor hz] at hz
|
||||||
|
let A := hz.1
|
||||||
|
let C := (hf z t₀).order_eq_zero_iff
|
||||||
simp
|
simp
|
||||||
|
rw [C] at A
|
||||||
tauto
|
tauto
|
||||||
|
|
Loading…
Reference in New Issue