Update divisor.lean
This commit is contained in:
parent
12f0543f47
commit
12d81cb0a9
|
@ -23,7 +23,13 @@ noncomputable def Divisor.n
|
|||
noncomputable def Divisor.N_trunk
|
||||
(D : Divisor) : ℤ → ℝ → ℝ := fun k r ↦ ∫ (t : ℝ) in (1)..r, (D.n_trunk k t) / t
|
||||
|
||||
|
||||
theorem Divisor.compactSupport
|
||||
(D : Divisor)
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsCompact U)
|
||||
(h₂U : Function.support D ⊆ U) :
|
||||
Set.Finite (Function.support D) := by
|
||||
sorry
|
||||
|
||||
|
||||
noncomputable def AnalyticOn.zeroDivisor
|
||||
|
@ -122,8 +128,12 @@ theorem AnalyticOn.support_of_zeroDivisor₂
|
|||
(hf : AnalyticOn ℂ f U) :
|
||||
Function.support hf.zeroDivisor ⊆ f⁻¹' {0} := by
|
||||
|
||||
simp
|
||||
intro z hz
|
||||
dsimp [AnalyticOn.zeroDivisor]
|
||||
dsimp [AnalyticOn.zeroDivisor] at hz
|
||||
have t₀ := hf.support_of_zeroDivisor hz
|
||||
simp [hf.support_of_zeroDivisor hz] at hz
|
||||
let A := hz.1
|
||||
let C := (hf z t₀).order_eq_zero_iff
|
||||
simp
|
||||
rw [C] at A
|
||||
tauto
|
||||
|
|
Loading…
Reference in New Issue