Add code of Gareth Ma
This commit is contained in:
parent
4981e92c1c
commit
0cb1914b18
|
@ -18,7 +18,7 @@ lemma xx
|
|||
let A := hf z hz
|
||||
let B := A.order
|
||||
|
||||
exact A.order
|
||||
exact (A.order : ⊤)
|
||||
else
|
||||
exact 0
|
||||
|
||||
|
|
|
@ -1,54 +0,0 @@
|
|||
import Mathlib.Analysis.SpecialFunctions.Integrals
|
||||
|
||||
theorem intervalIntegral.intervalIntegrable_log'
|
||||
{a : ℝ}
|
||||
{b : ℝ}
|
||||
{μ : MeasureTheory.Measure ℝ}
|
||||
[MeasureTheory.IsLocallyFiniteMeasure μ]
|
||||
(ha : 0 < a) :
|
||||
IntervalIntegrable Real.log μ 0 a
|
||||
:= by
|
||||
|
||||
sorry
|
||||
|
||||
theorem integral_log₀
|
||||
{b : ℝ}
|
||||
(hb : 0 < b) :
|
||||
∫ (x : ℝ) in (0)..b, Real.log x = b * (Real.log b - 1) := by
|
||||
apply?
|
||||
exact integral_log h
|
||||
|
||||
|
||||
open Real Nat Set Finset
|
||||
|
||||
open scoped Real Interval
|
||||
|
||||
--variable {a b : ℝ} (n : ℕ)
|
||||
|
||||
namespace intervalIntegral
|
||||
|
||||
--open MeasureTheory
|
||||
|
||||
--variable {f : ℝ → ℝ} {μ ν : Measure ℝ} [IsLocallyFiniteMeasure μ] (c d : ℝ)
|
||||
|
||||
#check integral_mul_deriv_eq_deriv_mul
|
||||
|
||||
theorem integral_log₁
|
||||
(h : (0 : ℝ) ∉ [[a, b]]) :
|
||||
∫ x in a..b, log x = b * log b - a * log a - b + a := by
|
||||
|
||||
have h' : ∀ x ∈ [[a, b]], x ≠ 0 :=
|
||||
fun x (hx : x ∈ [[a, b]]) => ne_of_mem_of_not_mem hx h
|
||||
have heq : ∀ x ∈ [[a, b]], x * x⁻¹ = 1 :=
|
||||
fun x hx => mul_inv_cancel (h' x hx)
|
||||
|
||||
let A := fun x hx => hasDerivAt_log (h' x hx)
|
||||
|
||||
convert integral_mul_deriv_eq_deriv_mul A (fun x _ => hasDerivAt_id x)
|
||||
|
||||
convert integral_mul_deriv_eq_deriv_mul A
|
||||
(fun x _ => hasDerivAt_id x) (continuousOn_inv₀.mono <|
|
||||
subset_compl_singleton_iff.mpr h).intervalIntegrable
|
||||
continuousOn_const.intervalIntegrable using 1 <;>
|
||||
|
||||
simp [integral_congr heq, mul_comm, ← sub_add]
|
|
@ -0,0 +1,68 @@
|
|||
import Mathlib.Analysis.SpecialFunctions.Integrals
|
||||
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
|
||||
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
||||
|
||||
open scoped Interval Topology
|
||||
open Real Filter MeasureTheory intervalIntegral
|
||||
|
||||
theorem logInt
|
||||
{t : ℝ}
|
||||
(ht : 0 < t) :
|
||||
∫ x in (0 : ℝ)..t, log x = t * log t - t := by
|
||||
rw [← integral_add_adjacent_intervals (b := 1)]
|
||||
trans (-1) + (t * log t - t + 1)
|
||||
· congr
|
||||
· -- ∫ x in 0..1, log x = -1, same proof as before
|
||||
rw [integral_eq_sub_of_hasDerivAt_of_tendsto (f := fun x ↦ x * log x - x) (fa := 0) (fb := -1)]
|
||||
· simp
|
||||
· simp
|
||||
· intro x hx
|
||||
norm_num at hx
|
||||
convert (hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x) using 1
|
||||
norm_num
|
||||
· rw [← neg_neg log]
|
||||
apply IntervalIntegrable.neg
|
||||
apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x))
|
||||
· exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg
|
||||
· intro x hx
|
||||
norm_num at hx
|
||||
convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1
|
||||
norm_num
|
||||
· intro x hx
|
||||
norm_num at hx
|
||||
rw [Pi.neg_apply, Left.nonneg_neg_iff]
|
||||
exact (log_nonpos_iff hx.left).mpr hx.right.le
|
||||
· have := tendsto_log_mul_rpow_nhds_zero zero_lt_one
|
||||
simp_rw [rpow_one, mul_comm] at this
|
||||
-- tendsto_nhdsWithin_of_tendsto_nhds should be under Tendsto namespace
|
||||
convert this.sub (tendsto_nhdsWithin_of_tendsto_nhds tendsto_id)
|
||||
norm_num
|
||||
· rw [(by simp : -1 = 1 * log 1 - 1)]
|
||||
apply tendsto_nhdsWithin_of_tendsto_nhds
|
||||
exact (continuousAt_id.mul (continuousAt_log one_ne_zero)).sub continuousAt_id
|
||||
· -- ∫ x in 1..t, log x = t * log t + 1, just use integral_log_of_pos
|
||||
rw [integral_log_of_pos zero_lt_one ht]
|
||||
norm_num
|
||||
· abel
|
||||
· -- log is integrable on [[0, 1]]
|
||||
rw [← neg_neg log]
|
||||
apply IntervalIntegrable.neg
|
||||
apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x))
|
||||
· exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg
|
||||
· intro x hx
|
||||
norm_num at hx
|
||||
convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1
|
||||
norm_num
|
||||
· intro x hx
|
||||
norm_num at hx
|
||||
rw [Pi.neg_apply, Left.nonneg_neg_iff]
|
||||
exact (log_nonpos_iff hx.left).mpr hx.right.le
|
||||
· -- log is integrable on [[0, t]]
|
||||
simp [Set.mem_uIcc, ht]
|
||||
|
||||
|
||||
lemma int₁ :
|
||||
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
|
||||
dsimp [circleMap]
|
||||
|
||||
sorry
|
Loading…
Reference in New Issue