diff --git a/Nevanlinna/holomorphic_JensenFormula2.lean b/Nevanlinna/holomorphic_JensenFormula2.lean index 01003b1..1c2881a 100644 --- a/Nevanlinna/holomorphic_JensenFormula2.lean +++ b/Nevanlinna/holomorphic_JensenFormula2.lean @@ -18,7 +18,7 @@ lemma xx let A := hf z hz let B := A.order - exact A.order + exact (A.order : ⊤) else exact 0 diff --git a/Nevanlinna/specialFunctions.lean b/Nevanlinna/specialFunctions.lean deleted file mode 100644 index 27dfe04..0000000 --- a/Nevanlinna/specialFunctions.lean +++ /dev/null @@ -1,54 +0,0 @@ -import Mathlib.Analysis.SpecialFunctions.Integrals - -theorem intervalIntegral.intervalIntegrable_log' - {a : ℝ} - {b : ℝ} - {μ : MeasureTheory.Measure ℝ} - [MeasureTheory.IsLocallyFiniteMeasure μ] - (ha : 0 < a) : - IntervalIntegrable Real.log μ 0 a - := by - - sorry - -theorem integral_log₀ - {b : ℝ} - (hb : 0 < b) : - ∫ (x : ℝ) in (0)..b, Real.log x = b * (Real.log b - 1) := by - apply? - exact integral_log h - - -open Real Nat Set Finset - -open scoped Real Interval - ---variable {a b : ℝ} (n : ℕ) - -namespace intervalIntegral - ---open MeasureTheory - ---variable {f : ℝ → ℝ} {μ ν : Measure ℝ} [IsLocallyFiniteMeasure μ] (c d : ℝ) - -#check integral_mul_deriv_eq_deriv_mul - -theorem integral_log₁ - (h : (0 : ℝ) ∉ [[a, b]]) : - ∫ x in a..b, log x = b * log b - a * log a - b + a := by - - have h' : ∀ x ∈ [[a, b]], x ≠ 0 := - fun x (hx : x ∈ [[a, b]]) => ne_of_mem_of_not_mem hx h - have heq : ∀ x ∈ [[a, b]], x * x⁻¹ = 1 := - fun x hx => mul_inv_cancel (h' x hx) - - let A := fun x hx => hasDerivAt_log (h' x hx) - - convert integral_mul_deriv_eq_deriv_mul A (fun x _ => hasDerivAt_id x) - - convert integral_mul_deriv_eq_deriv_mul A - (fun x _ => hasDerivAt_id x) (continuousOn_inv₀.mono <| - subset_compl_singleton_iff.mpr h).intervalIntegrable - continuousOn_const.intervalIntegrable using 1 <;> - - simp [integral_congr heq, mul_comm, ← sub_add] diff --git a/Nevanlinna/specialFunctions_Integrals.lean b/Nevanlinna/specialFunctions_Integrals.lean new file mode 100644 index 0000000..13dad97 --- /dev/null +++ b/Nevanlinna/specialFunctions_Integrals.lean @@ -0,0 +1,68 @@ +import Mathlib.Analysis.SpecialFunctions.Integrals +import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog +import Mathlib.MeasureTheory.Integral.CircleIntegral + +open scoped Interval Topology +open Real Filter MeasureTheory intervalIntegral + +theorem logInt + {t : ℝ} + (ht : 0 < t) : + ∫ x in (0 : ℝ)..t, log x = t * log t - t := by + rw [← integral_add_adjacent_intervals (b := 1)] + trans (-1) + (t * log t - t + 1) + · congr + · -- ∫ x in 0..1, log x = -1, same proof as before + rw [integral_eq_sub_of_hasDerivAt_of_tendsto (f := fun x ↦ x * log x - x) (fa := 0) (fb := -1)] + · simp + · simp + · intro x hx + norm_num at hx + convert (hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x) using 1 + norm_num + · rw [← neg_neg log] + apply IntervalIntegrable.neg + apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x)) + · exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg + · intro x hx + norm_num at hx + convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1 + norm_num + · intro x hx + norm_num at hx + rw [Pi.neg_apply, Left.nonneg_neg_iff] + exact (log_nonpos_iff hx.left).mpr hx.right.le + · have := tendsto_log_mul_rpow_nhds_zero zero_lt_one + simp_rw [rpow_one, mul_comm] at this + -- tendsto_nhdsWithin_of_tendsto_nhds should be under Tendsto namespace + convert this.sub (tendsto_nhdsWithin_of_tendsto_nhds tendsto_id) + norm_num + · rw [(by simp : -1 = 1 * log 1 - 1)] + apply tendsto_nhdsWithin_of_tendsto_nhds + exact (continuousAt_id.mul (continuousAt_log one_ne_zero)).sub continuousAt_id + · -- ∫ x in 1..t, log x = t * log t + 1, just use integral_log_of_pos + rw [integral_log_of_pos zero_lt_one ht] + norm_num + · abel + · -- log is integrable on [[0, 1]] + rw [← neg_neg log] + apply IntervalIntegrable.neg + apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x)) + · exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg + · intro x hx + norm_num at hx + convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1 + norm_num + · intro x hx + norm_num at hx + rw [Pi.neg_apply, Left.nonneg_neg_iff] + exact (log_nonpos_iff hx.left).mpr hx.right.le + · -- log is integrable on [[0, t]] + simp [Set.mem_uIcc, ht] + + +lemma int₁ : + ∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by + dsimp [circleMap] + + sorry