Update stronglyMeromorphicOn_ratlPolynomial.lean
This commit is contained in:
parent
0e88e97295
commit
092bfd85a3
@ -82,8 +82,7 @@ theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
|
|||||||
by_contra hCon
|
by_contra hCon
|
||||||
let A := congrFun hCon u
|
let A := congrFun hCon u
|
||||||
simp at A
|
simp at A
|
||||||
have t₁ : (0 : ℂ) ^ d u ≠ 0 := by
|
have t₁ : (0 : ℂ) ^ d u ≠ 0 := ne_zero_of_eq_one A
|
||||||
exact ne_zero_of_eq_one A
|
|
||||||
rw [zpow_ne_zero_iff h] at t₁
|
rw [zpow_ne_zero_iff h] at t₁
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
@ -104,42 +103,44 @@ theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
|
|||||||
tauto
|
tauto
|
||||||
· apply Filter.Eventually.of_forall
|
· apply Filter.Eventually.of_forall
|
||||||
intro x
|
intro x
|
||||||
|
have t₀ : (Function.mulSupport fun u z => (z - u) ^ d u).Finite := by
|
||||||
|
rwa [h₂d]
|
||||||
|
rw [finprod_eq_prod _ t₀]
|
||||||
|
have t₁ : h₁d.toFinset = t₀.toFinset := by
|
||||||
|
simp
|
||||||
|
rwa [eq_comm]
|
||||||
|
rw [t₁]
|
||||||
simp
|
simp
|
||||||
|
rw [eq_comm]
|
||||||
|
have : z ∉ h₁d.toFinset.erase z := Finset.not_mem_erase z h₁d.toFinset
|
||||||
|
by_cases hz : z ∈ h₁d.toFinset
|
||||||
|
· rw [t₁] at hz
|
||||||
|
conv =>
|
||||||
|
right
|
||||||
|
rw [← Finset.mul_prod_erase t₀.toFinset _ hz]
|
||||||
|
· have : t₀.toFinset = t₀.toFinset.erase z := by
|
||||||
|
rw [eq_comm]
|
||||||
|
apply Finset.erase_eq_of_not_mem
|
||||||
|
rwa [t₁] at hz
|
||||||
|
rw [this]
|
||||||
|
|
||||||
rw [← Finset.mul_prod_erase]
|
have : (x - z) ^ d z = 1 := by
|
||||||
sorry
|
simp at hz
|
||||||
|
rw [hz]
|
||||||
by_cases hz : z ∈ d.support
|
simp
|
||||||
· sorry
|
rw [this]
|
||||||
· use (∏ᶠ u, fun z ↦ (z - u) ^ d u)
|
simp
|
||||||
constructor
|
|
||||||
·
|
|
||||||
apply?
|
|
||||||
|
|
||||||
simp [hz]
|
|
||||||
|
|
||||||
sorry
|
|
||||||
· rw [Function.nmem_support.mp fun a => hz (h₂d a)]
|
|
||||||
rw [MeromorphicOn.divisor]
|
|
||||||
simp [hz]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
theorem stronglyMeromorphicOn_divisor_ratlPolynomial
|
theorem stronglyMeromorphicOn_divisor_ratlPolynomial
|
||||||
{U : Set ℂ}
|
|
||||||
(d : ℂ → ℤ)
|
(d : ℂ → ℤ)
|
||||||
(h₁d : Set.Finite d.support)
|
(h₁d : Set.Finite d.support) :
|
||||||
(h₂d : d.support ⊆ U) :
|
(stronglyMeromorphicOn_ratlPolynomial₃ d).meromorphicOn.divisor = d := by
|
||||||
(stronglyMeromorphicOn_ratlPolynomial₃ d (U := U)).meromorphicOn.divisor = d := by
|
|
||||||
funext z
|
funext z
|
||||||
by_cases hz : z ∈ U
|
rw [MeromorphicOn.divisor]
|
||||||
· rw [MeromorphicOn.divisor]
|
simp
|
||||||
simp [hz]
|
rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d h₁d]
|
||||||
|
simp
|
||||||
sorry
|
|
||||||
· rw [Function.nmem_support.mp fun a => hz (h₂d a)]
|
|
||||||
rw [MeromorphicOn.divisor]
|
|
||||||
simp [hz]
|
|
||||||
|
|
||||||
|
|
||||||
theorem makeStronglyMeromorphicOn_changeDiscrete'
|
theorem makeStronglyMeromorphicOn_changeDiscrete'
|
||||||
|
Loading…
Reference in New Issue
Block a user