diff --git a/Nevanlinna/stronglyMeromorphicOn_ratlPolynomial.lean b/Nevanlinna/stronglyMeromorphicOn_ratlPolynomial.lean index 3ecd628..695131d 100644 --- a/Nevanlinna/stronglyMeromorphicOn_ratlPolynomial.lean +++ b/Nevanlinna/stronglyMeromorphicOn_ratlPolynomial.lean @@ -82,8 +82,7 @@ theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁ by_contra hCon let A := congrFun hCon u simp at A - have t₁ : (0 : ℂ) ^ d u ≠ 0 := by - exact ne_zero_of_eq_one A + have t₁ : (0 : ℂ) ^ d u ≠ 0 := ne_zero_of_eq_one A rw [zpow_ne_zero_iff h] at t₁ tauto @@ -104,42 +103,44 @@ theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁ tauto · apply Filter.Eventually.of_forall intro x + have t₀ : (Function.mulSupport fun u z => (z - u) ^ d u).Finite := by + rwa [h₂d] + rw [finprod_eq_prod _ t₀] + have t₁ : h₁d.toFinset = t₀.toFinset := by + simp + rwa [eq_comm] + rw [t₁] simp + rw [eq_comm] + have : z ∉ h₁d.toFinset.erase z := Finset.not_mem_erase z h₁d.toFinset + by_cases hz : z ∈ h₁d.toFinset + · rw [t₁] at hz + conv => + right + rw [← Finset.mul_prod_erase t₀.toFinset _ hz] + · have : t₀.toFinset = t₀.toFinset.erase z := by + rw [eq_comm] + apply Finset.erase_eq_of_not_mem + rwa [t₁] at hz + rw [this] - rw [← Finset.mul_prod_erase] - sorry - - by_cases hz : z ∈ d.support - · sorry - · use (∏ᶠ u, fun z ↦ (z - u) ^ d u) - constructor - · - apply? - - simp [hz] - - sorry - · rw [Function.nmem_support.mp fun a => hz (h₂d a)] - rw [MeromorphicOn.divisor] - simp [hz] - + have : (x - z) ^ d z = 1 := by + simp at hz + rw [hz] + simp + rw [this] + simp theorem stronglyMeromorphicOn_divisor_ratlPolynomial - {U : Set ℂ} (d : ℂ → ℤ) - (h₁d : Set.Finite d.support) - (h₂d : d.support ⊆ U) : - (stronglyMeromorphicOn_ratlPolynomial₃ d (U := U)).meromorphicOn.divisor = d := by + (h₁d : Set.Finite d.support) : + (stronglyMeromorphicOn_ratlPolynomial₃ d).meromorphicOn.divisor = d := by funext z - by_cases hz : z ∈ U - · rw [MeromorphicOn.divisor] - simp [hz] - - sorry - · rw [Function.nmem_support.mp fun a => hz (h₂d a)] - rw [MeromorphicOn.divisor] - simp [hz] + rw [MeromorphicOn.divisor] + simp + rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d h₁d] + simp theorem makeStronglyMeromorphicOn_changeDiscrete'