Working…
This commit is contained in:
parent
054edd49a7
commit
08e963e801
@ -41,8 +41,8 @@ noncomputable def MeromorphicOn.N_infty
|
|||||||
|
|
||||||
theorem Nevanlinna_counting₁₁
|
theorem Nevanlinna_counting₁₁
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{a : ℂ}
|
(hf : MeromorphicOn f ⊤)
|
||||||
(hf : MeromorphicOn f ⊤) :
|
(a : ℂ) :
|
||||||
(hf.add (MeromorphicOn.const a)).N_infty = hf.N_infty := by
|
(hf.add (MeromorphicOn.const a)).N_infty = hf.N_infty := by
|
||||||
|
|
||||||
funext r
|
funext r
|
||||||
@ -94,6 +94,19 @@ theorem Nevanlinna_counting₁₁
|
|||||||
clear this
|
clear this
|
||||||
simp [G]
|
simp [G]
|
||||||
|
|
||||||
|
theorem Nevanlinna_counting'₁₁
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
(hf : MeromorphicOn f ⊤)
|
||||||
|
(a : ℂ) :
|
||||||
|
(hf.sub (MeromorphicOn.const a)).N_infty = hf.N_infty := by
|
||||||
|
have : (f - fun x => a) = (f + fun x => -a) := by
|
||||||
|
funext x
|
||||||
|
simp; ring
|
||||||
|
have : (hf.sub (MeromorphicOn.const a)).N_infty = (hf.add (MeromorphicOn.const (-a))).N_infty := by
|
||||||
|
simp
|
||||||
|
rw [this]
|
||||||
|
exact Nevanlinna_counting₁₁ hf (-a)
|
||||||
|
|
||||||
|
|
||||||
theorem Nevanlinna_counting₀
|
theorem Nevanlinna_counting₀
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
@ -286,4 +299,109 @@ theorem Nevanlinna_firstMain₂
|
|||||||
|
|
||||||
-- See Lang, p. 168
|
-- See Lang, p. 168
|
||||||
|
|
||||||
|
have : (h₁f.T_infty r) - ((h₁f.sub (MeromorphicOn.const a)).T_infty r) = (h₁f.m_infty r) - ((h₁f.sub (MeromorphicOn.const a)).m_infty r) := by
|
||||||
|
unfold MeromorphicOn.T_infty
|
||||||
|
rw [Nevanlinna_counting'₁₁ h₁f a]
|
||||||
|
simp
|
||||||
|
rw [this]
|
||||||
|
clear this
|
||||||
|
|
||||||
|
unfold MeromorphicOn.m_infty
|
||||||
|
rw [←mul_sub]
|
||||||
|
rw [←intervalIntegral.integral_sub]
|
||||||
|
|
||||||
|
let g := f - (fun _ ↦ a)
|
||||||
|
|
||||||
|
have t₀₀ (x : ℝ) : log⁺ ‖f (circleMap 0 r x)‖ ≤ log⁺ ‖g (circleMap 0 r x)‖ + log⁺ ‖a‖ + log 2 := by
|
||||||
|
unfold g
|
||||||
|
simp only [Pi.sub_apply]
|
||||||
|
|
||||||
|
calc log⁺ ‖f (circleMap 0 r x)‖
|
||||||
|
_ = log⁺ ‖g (circleMap 0 r x) + a‖ := by
|
||||||
|
unfold g
|
||||||
|
simp
|
||||||
|
_ ≤ log⁺ (‖g (circleMap 0 r x)‖ + ‖a‖) := by
|
||||||
|
apply monoOn_logpos
|
||||||
|
refine Set.mem_Ici.mpr ?_
|
||||||
|
apply norm_nonneg
|
||||||
|
refine Set.mem_Ici.mpr ?_
|
||||||
|
apply add_nonneg
|
||||||
|
apply norm_nonneg
|
||||||
|
apply norm_nonneg
|
||||||
|
--
|
||||||
|
apply norm_add_le
|
||||||
|
_ ≤ log⁺ ‖g (circleMap 0 r x)‖ + log⁺ ‖a‖ + log 2 := by
|
||||||
|
apply logpos_add_le_add_logpos_add_log2
|
||||||
|
|
||||||
|
have t₁₀ (x : ℝ) : log⁺ ‖f (circleMap 0 r x)‖ - log⁺ ‖g (circleMap 0 r x)‖ ≤ log⁺ ‖a‖ + log 2 := by
|
||||||
|
rw [sub_le_iff_le_add]
|
||||||
|
nth_rw 1 [add_comm]
|
||||||
|
rw [←add_assoc]
|
||||||
|
apply t₀₀ x
|
||||||
|
clear t₀₀
|
||||||
|
|
||||||
|
have t₀₁ (x : ℝ) : log⁺ ‖g (circleMap 0 r x)‖ ≤ log⁺ ‖f (circleMap 0 r x)‖ + log⁺ ‖a‖ + log 2 := by
|
||||||
|
unfold g
|
||||||
|
simp only [Pi.sub_apply]
|
||||||
|
|
||||||
|
calc log⁺ ‖g (circleMap 0 r x)‖
|
||||||
|
_ = log⁺ ‖f (circleMap 0 r x) - a‖ := by
|
||||||
|
unfold g
|
||||||
|
simp
|
||||||
|
_ ≤ log⁺ (‖f (circleMap 0 r x)‖ + ‖a‖) := by
|
||||||
|
apply monoOn_logpos
|
||||||
|
refine Set.mem_Ici.mpr ?_
|
||||||
|
apply norm_nonneg
|
||||||
|
refine Set.mem_Ici.mpr ?_
|
||||||
|
apply add_nonneg
|
||||||
|
apply norm_nonneg
|
||||||
|
apply norm_nonneg
|
||||||
|
--
|
||||||
|
apply norm_sub_le
|
||||||
|
_ ≤ log⁺ ‖f (circleMap 0 r x)‖ + log⁺ ‖a‖ + log 2 := by
|
||||||
|
apply logpos_add_le_add_logpos_add_log2
|
||||||
|
|
||||||
|
have t₁₁ (x : ℝ) : log⁺ ‖g (circleMap 0 r x)‖ - log⁺ ‖f (circleMap 0 r x)‖ ≤ log⁺ ‖a‖ + log 2 := by
|
||||||
|
rw [sub_le_iff_le_add]
|
||||||
|
nth_rw 1 [add_comm]
|
||||||
|
rw [←add_assoc]
|
||||||
|
apply t₀₁ x
|
||||||
|
clear t₀₁
|
||||||
|
|
||||||
|
have t₂ {x : ℝ} : ‖log⁺ ‖f (circleMap 0 r x)‖ - log⁺ ‖g (circleMap 0 r x)‖‖ ≤ log⁺ ‖a‖ + log 2 := by
|
||||||
|
by_cases h : 0 ≤ log⁺ ‖f (circleMap 0 r x)‖ - log⁺ ‖g (circleMap 0 r x)‖
|
||||||
|
· rw [norm_of_nonneg h]
|
||||||
|
exact t₁₀ x
|
||||||
|
· rw [norm_of_nonpos (by linarith)]
|
||||||
|
rw [neg_sub]
|
||||||
|
exact t₁₁ x
|
||||||
|
clear t₁₀ t₁₁
|
||||||
|
|
||||||
|
have : ‖∫ (x : ℝ) in (0)..(2 * π), log⁺ ‖f (circleMap 0 r x)‖ - log⁺ ‖g (circleMap 0 r x)‖‖ ≤ (log⁺ ‖a‖ + log 2) * |2 * π - 0| := by
|
||||||
|
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
||||||
|
intro x hx
|
||||||
|
exact t₂
|
||||||
|
clear t₂
|
||||||
|
simp only [norm_eq_abs, sub_zero] at this
|
||||||
|
rw [abs_mul]
|
||||||
|
|
||||||
|
|
||||||
|
calc |(2 * π)⁻¹| * |∫ (x : ℝ) in (0)..(2 * π), log⁺ ‖f (circleMap 0 r x)‖ - log⁺ ‖g (circleMap 0 r x)‖|
|
||||||
|
_ = |(2 * π)⁻¹| * ‖∫ (x : ℝ) in (0)..(2 * π), log⁺ ‖f (circleMap 0 r x)‖ - log⁺ ‖g (circleMap 0 r x)‖‖ := by
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
_ ≤ |(2 * π)⁻¹| * ((log⁺ ‖a‖ + log 2) * |2 * π|) := by
|
||||||
|
apply?
|
||||||
|
|
||||||
|
sorry
|
||||||
|
_ = log⁺ ‖a‖ + log 2 := by
|
||||||
|
simp [pi_ne_zero]
|
||||||
|
--
|
||||||
|
|
||||||
|
apply MeromorphicOn.integrable_logpos_abs_f
|
||||||
|
exact fun x a => h₁f x trivial
|
||||||
|
--
|
||||||
|
apply MeromorphicOn.integrable_logpos_abs_f
|
||||||
|
apply MeromorphicOn.sub
|
||||||
|
exact fun x a => h₁f x trivial
|
||||||
|
apply MeromorphicOn.const a
|
||||||
|
@ -35,6 +35,14 @@ theorem logpos_norm {r : ℝ} : log⁺ r = 2⁻¹ * (log r + ‖log r‖) := by
|
|||||||
rw [this]
|
rw [this]
|
||||||
ring
|
ring
|
||||||
|
|
||||||
|
|
||||||
|
theorem logpos_nonneg
|
||||||
|
{x : ℝ} :
|
||||||
|
0 ≤ log⁺ x := by
|
||||||
|
unfold logpos
|
||||||
|
simp
|
||||||
|
|
||||||
|
|
||||||
theorem logpos_abs
|
theorem logpos_abs
|
||||||
{x : ℝ} :
|
{x : ℝ} :
|
||||||
log⁺ x = log⁺ |x| := by
|
log⁺ x = log⁺ |x| := by
|
||||||
@ -125,3 +133,27 @@ theorem logpos_add_le_add_logpos_add_log2
|
|||||||
· rw [add_comm a b, add_comm (log⁺ a) (log⁺ b)]
|
· rw [add_comm a b, add_comm (log⁺ a) (log⁺ b)]
|
||||||
apply logpos_add_le_add_logpos_add_log2₀
|
apply logpos_add_le_add_logpos_add_log2₀
|
||||||
exact le_of_not_ge h
|
exact le_of_not_ge h
|
||||||
|
|
||||||
|
theorem monoOn_logpos :
|
||||||
|
MonotoneOn log⁺ (Set.Ici 0) := by
|
||||||
|
intro x hx y hy hxy
|
||||||
|
by_cases h₁x : x = 0
|
||||||
|
· rw [h₁x]
|
||||||
|
unfold logpos
|
||||||
|
simp
|
||||||
|
|
||||||
|
simp at hx hy
|
||||||
|
unfold logpos
|
||||||
|
simp
|
||||||
|
by_cases h₂x : log x ≤ 0
|
||||||
|
· tauto
|
||||||
|
· simp [h₂x]
|
||||||
|
simp at h₂x
|
||||||
|
have : log x ≤ log y := by
|
||||||
|
apply log_le_log
|
||||||
|
exact lt_of_le_of_ne hx fun a => h₁x (id (Eq.symm a))
|
||||||
|
assumption
|
||||||
|
simp [this]
|
||||||
|
calc 0
|
||||||
|
_ ≤ log x := by exact le_of_lt h₂x
|
||||||
|
_ ≤ log y := this
|
||||||
|
Loading…
Reference in New Issue
Block a user