Create bilinear.lean
This commit is contained in:
parent
c1766f6a38
commit
07f4ff610b
|
@ -0,0 +1,39 @@
|
||||||
|
import Mathlib.Algebra.BigOperators.Basic
|
||||||
|
import Mathlib.Analysis.InnerProductSpace.Basic
|
||||||
|
import Mathlib.Analysis.InnerProductSpace.Dual
|
||||||
|
import Mathlib.Analysis.InnerProductSpace.PiL2
|
||||||
|
|
||||||
|
|
||||||
|
open BigOperators
|
||||||
|
open Finset
|
||||||
|
|
||||||
|
variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E]
|
||||||
|
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||||
|
|
||||||
|
open TensorProduct
|
||||||
|
|
||||||
|
example : 0 = 1 := by
|
||||||
|
|
||||||
|
let B := (sesqFormOfInner (𝕜 := ℝ) (E := E)).flip
|
||||||
|
|
||||||
|
|
||||||
|
have e: E := by sorry
|
||||||
|
let C := B e
|
||||||
|
|
||||||
|
let α := InnerProductSpace.toDual ℝ E
|
||||||
|
|
||||||
|
let β : E →ₗ[ℝ] ℝ := by sorry
|
||||||
|
let YY := E ⊗[ℝ] E
|
||||||
|
|
||||||
|
let ZZ := TensorProduct.mapBilinear ℝ E E ℝ ℝ
|
||||||
|
|
||||||
|
|
||||||
|
let A : E × E → LinearMap.BilinForm ℝ E := by
|
||||||
|
unfold LinearMap.BilinForm
|
||||||
|
intro (e₁, e₂)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
||||||
|
sorry
|
Loading…
Reference in New Issue