Update complexHarmonic.lean
This commit is contained in:
		| @@ -25,10 +25,42 @@ variable {G₁ : Type*} [NormedAddCommGroup G₁] [NormedSpace ℂ G₁] [Comple | ||||
| def Harmonic (f : ℂ → F) : Prop := | ||||
|   (ContDiff ℝ 2 f) ∧ (∀ z, Δ f z = 0) | ||||
|  | ||||
| def HarmonicAt (f : ℂ → F) (x : ℂ) : Prop := | ||||
|   (ContDiffAt ℝ 2 f x) ∧ (Δ f =ᶠ[nhds x] 0) | ||||
|  | ||||
| def HarmonicOn (f : ℂ → F) (s : Set ℂ) : Prop := | ||||
|   (ContDiffOn ℝ 2 f s) ∧ (∀ z ∈ s, Δ f z = 0) | ||||
|  | ||||
| theorem HarmonicAt_iff | ||||
|   {f : ℂ → F} | ||||
|   {x : ℂ} : | ||||
|   HarmonicAt f x ↔ ∃ s : Set ℂ, IsOpen s ∧ x ∈ s ∧ (ContDiffOn ℝ 2 f s) ∧ (∀ z ∈ s, Δ f z = 0) := by | ||||
|   constructor | ||||
|   · intro hf | ||||
|     obtain ⟨s₁, h₁s₁, h₂s₁, h₃s₁⟩ := hf.1.contDiffOn' le_rfl | ||||
|     simp at h₃s₁ | ||||
|     obtain ⟨t₂, h₁t₂, h₂t₂⟩ := (Filter.eventuallyEq_iff_exists_mem.1 hf.2) | ||||
|     obtain ⟨s₂, h₁s₂, h₂s₂, h₃s₂⟩ := mem_nhds_iff.1 h₁t₂ | ||||
|     let s := s₁ ∩ s₂ | ||||
|     use s | ||||
|     constructor | ||||
|     · exact IsOpen.inter h₁s₁ h₂s₂ | ||||
|     · constructor | ||||
|       · exact Set.mem_inter h₂s₁ h₃s₂ | ||||
|       · constructor | ||||
|         · exact h₃s₁.mono (Set.inter_subset_left s₁ s₂) | ||||
|         · intro z hz | ||||
|           exact h₂t₂ (h₁s₂ hz.2) | ||||
|   · intro hyp | ||||
|     obtain ⟨s, h₁s, h₂s, h₁f, h₂f⟩ := hyp | ||||
|     constructor | ||||
|     · apply h₁f.contDiffAt | ||||
|       apply (IsOpen.mem_nhds_iff h₁s).2 h₂s | ||||
|     · apply Filter.eventuallyEq_iff_exists_mem.2 | ||||
|       use s | ||||
|       constructor | ||||
|       · apply (IsOpen.mem_nhds_iff h₁s).2 h₂s | ||||
|       · exact h₂f | ||||
|  | ||||
|  | ||||
| theorem HarmonicOn_of_locally_HarmonicOn {f : ℂ → F} {s : Set ℂ} (h : ∀ x ∈ s, ∃ (u : Set ℂ), IsOpen u ∧ x ∈ u ∧ HarmonicOn f (s ∩ u)) : | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus