Simplify
This commit is contained in:
parent
7741447426
commit
74d9636aa9
@ -33,10 +33,10 @@ theorem laplace_eventuallyEq {f₁ f₂ : ℂ → F} {x : ℂ} (h : f₁ =ᶠ[nh
|
||||
rw [partialDeriv_eventuallyEq ℝ (partialDeriv_eventuallyEq' ℝ h Complex.I) Complex.I]
|
||||
|
||||
|
||||
theorem laplace_add
|
||||
theorem laplace_add
|
||||
{f₁ f₂ : ℂ → F}
|
||||
(h₁ : ContDiff ℝ 2 f₁)
|
||||
(h₂ : ContDiff ℝ 2 f₂) :
|
||||
(h₂ : ContDiff ℝ 2 f₂) :
|
||||
Δ (f₁ + f₂) = (Δ f₁) + (Δ f₂) := by
|
||||
|
||||
unfold Complex.laplace
|
||||
@ -141,55 +141,11 @@ theorem laplace_add_ContDiffAt
|
||||
unfold Complex.laplace
|
||||
simp
|
||||
|
||||
have hf₁ : ∀ z ∈ s, DifferentiableAt ℝ f₁ z := by
|
||||
intro z hz
|
||||
convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
|
||||
apply ContDiffOn.differentiableOn h₁ one_le_two
|
||||
|
||||
have hf₂ : ∀ z ∈ s, DifferentiableAt ℝ f₂ z := by
|
||||
intro z hz
|
||||
convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
|
||||
apply ContDiffOn.differentiableOn h₂ one_le_two
|
||||
|
||||
have : partialDeriv ℝ 1 (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ 1 f₁) + (partialDeriv ℝ 1 f₂) := by
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use s
|
||||
constructor
|
||||
· exact IsOpen.mem_nhds hs hx
|
||||
· intro z hz
|
||||
apply partialDeriv_add₂_differentiableAt
|
||||
exact hf₁ z hz
|
||||
exact hf₂ z hz
|
||||
rw [partialDeriv_eventuallyEq ℝ this]
|
||||
have t₁ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₁) x := by
|
||||
let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||||
let A₀ := partialDeriv_contDiffAt ℝ B₀ 1
|
||||
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||||
have t₂ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₂) x := by
|
||||
let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||||
let A₀ := partialDeriv_contDiffAt ℝ B₀ 1
|
||||
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||||
rw [partialDeriv_add₂_differentiableAt ℝ t₁ t₂]
|
||||
|
||||
have : partialDeriv ℝ Complex.I (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ Complex.I f₁) + (partialDeriv ℝ Complex.I f₂) := by
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use s
|
||||
constructor
|
||||
· exact IsOpen.mem_nhds hs hx
|
||||
· intro z hz
|
||||
apply partialDeriv_add₂_differentiableAt
|
||||
exact hf₁ z hz
|
||||
exact hf₂ z hz
|
||||
rw [partialDeriv_eventuallyEq ℝ this]
|
||||
have t₃ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₁) x := by
|
||||
let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||||
let A₀ := partialDeriv_contDiffAt ℝ B₀ Complex.I
|
||||
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||||
have t₄ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₂) x := by
|
||||
let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||||
let A₀ := partialDeriv_contDiffAt ℝ B₀ Complex.I
|
||||
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||||
rw [partialDeriv_add₂_differentiableAt ℝ t₃ t₄]
|
||||
have h₁₁ : ContDiffAt ℝ 1 f₁ x := h₁.of_le one_le_two
|
||||
have h₂₁ : ContDiffAt ℝ 1 f₂ x := h₂.of_le one_le_two
|
||||
repeat
|
||||
rw [partialDeriv_eventuallyEq ℝ (partialDeriv_add₂_contDiffAt ℝ h₁₁ h₂₁)]
|
||||
rw [partialDeriv_add₂_differentiableAt]
|
||||
|
||||
-- I am super confused at this point because the tactic 'ring' does not work.
|
||||
-- I do not understand why. So, I need to do things by hand.
|
||||
@ -201,6 +157,10 @@ theorem laplace_add_ContDiffAt
|
||||
rw [add_right_inj (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁) x)]
|
||||
rw [add_comm]
|
||||
|
||||
repeat
|
||||
apply fun v ↦ (partialDeriv_contDiffAt ℝ h₁ v).differentiableAt le_rfl
|
||||
apply fun v ↦ (partialDeriv_contDiffAt ℝ h₂ v).differentiableAt le_rfl
|
||||
|
||||
|
||||
theorem laplace_smul {f : ℂ → F} : ∀ v : ℝ, Δ (v • f) = v • (Δ f) := by
|
||||
intro v
|
||||
@ -257,13 +217,13 @@ theorem laplace_compCLMAt {f : ℂ → F} {l : F →L[ℝ] G} {x : ℂ} (h : Con
|
||||
apply ContDiffAt.differentiableAt (partialDeriv_contDiffAt ℝ (ContDiffOn.contDiffAt hv₄ hv₁) 1) le_rfl
|
||||
|
||||
|
||||
theorem laplace_compCLM
|
||||
{f : ℂ → F}
|
||||
{l : F →L[ℝ] G}
|
||||
theorem laplace_compCLM
|
||||
{f : ℂ → F}
|
||||
{l : F →L[ℝ] G}
|
||||
(h : ContDiff ℝ 2 f) :
|
||||
Δ (l ∘ f) = l ∘ (Δ f) := by
|
||||
funext z
|
||||
exact laplace_compCLMAt h.contDiffAt
|
||||
exact laplace_compCLMAt h.contDiffAt
|
||||
|
||||
|
||||
theorem laplace_compCLE {f : ℂ → F} {l : F ≃L[ℝ] G} :
|
||||
|
@ -66,9 +66,9 @@ theorem partialDeriv_smul₂ {f : E → F} {a : 𝕜} {v : E} : partialDeriv
|
||||
simp
|
||||
|
||||
|
||||
theorem partialDeriv_add₂ {f₁ f₂ : E → F} {v : E} (h₁ : Differentiable 𝕜 f₁) (h₂ : Differentiable 𝕜 f₂) : partialDeriv 𝕜 v (f₁ + f₂) = (partialDeriv 𝕜 v f₁) + (partialDeriv 𝕜 v f₂) := by
|
||||
theorem partialDeriv_add₂ {f₁ f₂ : E → F} (h₁ : Differentiable 𝕜 f₁) (h₂ : Differentiable 𝕜 f₂) : ∀ v : E, partialDeriv 𝕜 v (f₁ + f₂) = (partialDeriv 𝕜 v f₁) + (partialDeriv 𝕜 v f₂) := by
|
||||
unfold partialDeriv
|
||||
|
||||
intro v
|
||||
have : f₁ + f₂ = fun y ↦ f₁ y + f₂ y := by rfl
|
||||
rw [this]
|
||||
conv =>
|
||||
@ -110,16 +110,16 @@ theorem partialDeriv_add₂_contDiffAt
|
||||
· exact Filter.inter_mem hu₁ hu₂
|
||||
· intro x hx
|
||||
simp
|
||||
apply partialDeriv_add₂_differentiableAt 𝕜
|
||||
apply partialDeriv_add₂_differentiableAt 𝕜
|
||||
exact (hf₁' x (Set.mem_of_mem_inter_left hx)).differentiableAt
|
||||
exact (hf₂' x (Set.mem_of_mem_inter_right hx)).differentiableAt
|
||||
|
||||
|
||||
theorem partialDeriv_compContLin
|
||||
{f : E → F}
|
||||
{l : F →L[𝕜] G}
|
||||
{v : E}
|
||||
(h : Differentiable 𝕜 f) :
|
||||
|
||||
theorem partialDeriv_compContLin
|
||||
{f : E → F}
|
||||
{l : F →L[𝕜] G}
|
||||
{v : E}
|
||||
(h : Differentiable 𝕜 f) :
|
||||
partialDeriv 𝕜 v (l ∘ f) = l ∘ partialDeriv 𝕜 v f := by
|
||||
unfold partialDeriv
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user