Update complexHarmonic.lean
This commit is contained in:
parent
74d9636aa9
commit
05582e5d83
|
@ -25,10 +25,42 @@ variable {G₁ : Type*} [NormedAddCommGroup G₁] [NormedSpace ℂ G₁] [Comple
|
||||||
def Harmonic (f : ℂ → F) : Prop :=
|
def Harmonic (f : ℂ → F) : Prop :=
|
||||||
(ContDiff ℝ 2 f) ∧ (∀ z, Δ f z = 0)
|
(ContDiff ℝ 2 f) ∧ (∀ z, Δ f z = 0)
|
||||||
|
|
||||||
|
def HarmonicAt (f : ℂ → F) (x : ℂ) : Prop :=
|
||||||
|
(ContDiffAt ℝ 2 f x) ∧ (Δ f =ᶠ[nhds x] 0)
|
||||||
|
|
||||||
def HarmonicOn (f : ℂ → F) (s : Set ℂ) : Prop :=
|
def HarmonicOn (f : ℂ → F) (s : Set ℂ) : Prop :=
|
||||||
(ContDiffOn ℝ 2 f s) ∧ (∀ z ∈ s, Δ f z = 0)
|
(ContDiffOn ℝ 2 f s) ∧ (∀ z ∈ s, Δ f z = 0)
|
||||||
|
|
||||||
|
theorem HarmonicAt_iff
|
||||||
|
{f : ℂ → F}
|
||||||
|
{x : ℂ} :
|
||||||
|
HarmonicAt f x ↔ ∃ s : Set ℂ, IsOpen s ∧ x ∈ s ∧ (ContDiffOn ℝ 2 f s) ∧ (∀ z ∈ s, Δ f z = 0) := by
|
||||||
|
constructor
|
||||||
|
· intro hf
|
||||||
|
obtain ⟨s₁, h₁s₁, h₂s₁, h₃s₁⟩ := hf.1.contDiffOn' le_rfl
|
||||||
|
simp at h₃s₁
|
||||||
|
obtain ⟨t₂, h₁t₂, h₂t₂⟩ := (Filter.eventuallyEq_iff_exists_mem.1 hf.2)
|
||||||
|
obtain ⟨s₂, h₁s₂, h₂s₂, h₃s₂⟩ := mem_nhds_iff.1 h₁t₂
|
||||||
|
let s := s₁ ∩ s₂
|
||||||
|
use s
|
||||||
|
constructor
|
||||||
|
· exact IsOpen.inter h₁s₁ h₂s₂
|
||||||
|
· constructor
|
||||||
|
· exact Set.mem_inter h₂s₁ h₃s₂
|
||||||
|
· constructor
|
||||||
|
· exact h₃s₁.mono (Set.inter_subset_left s₁ s₂)
|
||||||
|
· intro z hz
|
||||||
|
exact h₂t₂ (h₁s₂ hz.2)
|
||||||
|
· intro hyp
|
||||||
|
obtain ⟨s, h₁s, h₂s, h₁f, h₂f⟩ := hyp
|
||||||
|
constructor
|
||||||
|
· apply h₁f.contDiffAt
|
||||||
|
apply (IsOpen.mem_nhds_iff h₁s).2 h₂s
|
||||||
|
· apply Filter.eventuallyEq_iff_exists_mem.2
|
||||||
|
use s
|
||||||
|
constructor
|
||||||
|
· apply (IsOpen.mem_nhds_iff h₁s).2 h₂s
|
||||||
|
· exact h₂f
|
||||||
|
|
||||||
|
|
||||||
theorem HarmonicOn_of_locally_HarmonicOn {f : ℂ → F} {s : Set ℂ} (h : ∀ x ∈ s, ∃ (u : Set ℂ), IsOpen u ∧ x ∈ u ∧ HarmonicOn f (s ∩ u)) :
|
theorem HarmonicOn_of_locally_HarmonicOn {f : ℂ → F} {s : Set ℂ} (h : ∀ x ∈ s, ∃ (u : Set ℂ), IsOpen u ∧ x ∈ u ∧ HarmonicOn f (s ∩ u)) :
|
||||||
|
|
Loading…
Reference in New Issue