34 lines
1.1 KiB
Plaintext
34 lines
1.1 KiB
Plaintext
|
import Mathlib.Analysis.Analytic.Meromorphic
|
|||
|
import Nevanlinna.analyticAt
|
|||
|
import Nevanlinna.divisor
|
|||
|
import Nevanlinna.meromorphicAt
|
|||
|
import Nevanlinna.meromorphicOn_divisor
|
|||
|
import Nevanlinna.stronglyMeromorphicOn
|
|||
|
import Nevanlinna.mathlibAddOn
|
|||
|
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
|||
|
|
|||
|
|
|||
|
open scoped Interval Topology
|
|||
|
open Real Filter MeasureTheory intervalIntegral
|
|||
|
|
|||
|
|
|||
|
theorem integrability_congr_changeDiscrete
|
|||
|
{f₁ f₂ : ℂ → ℂ}
|
|||
|
{r : ℝ}
|
|||
|
(hf : f₁ =ᶠ[Filter.codiscreteWithin ⊤] f₂) :
|
|||
|
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
|
|||
|
intro hf₁
|
|||
|
|
|||
|
apply IntervalIntegrable.congr hf₁
|
|||
|
rw [Filter.eventuallyEq_iff_exists_mem]
|
|||
|
use (circleMap 0 r)⁻¹' { z | f₁ z = f₂ z}
|
|||
|
constructor
|
|||
|
· apply Set.Countable.measure_zero
|
|||
|
have : (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z})ᶜ = (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z}ᶜ) := by
|
|||
|
exact rfl
|
|||
|
rw [this]
|
|||
|
apply Set.Countable.preimage_circleMap
|
|||
|
sorry
|
|||
|
sorry
|
|||
|
· sorry
|