2024-12-05 16:53:48 +01:00
|
|
|
|
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
2024-12-05 13:51:00 +01:00
|
|
|
|
import Nevanlinna.divisor
|
2024-12-05 16:53:48 +01:00
|
|
|
|
import Nevanlinna.meromorphicOn_divisor
|
2024-12-19 16:10:51 +01:00
|
|
|
|
import Nevanlinna.meromorphicOn_integrability
|
2024-12-20 09:42:56 +01:00
|
|
|
|
import Nevanlinna.stronglyMeromorphicOn
|
|
|
|
|
import Nevanlinna.stronglyMeromorphic_JensenFormula
|
2024-09-13 09:21:57 +02:00
|
|
|
|
|
|
|
|
|
open Real
|
|
|
|
|
|
|
|
|
|
|
2024-12-05 16:53:48 +01:00
|
|
|
|
-- Lang p. 164
|
2024-12-09 19:58:56 +01:00
|
|
|
|
|
|
|
|
|
theorem MeromorphicOn.restrict
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
(h₁f : MeromorphicOn f ⊤)
|
|
|
|
|
(r : ℝ) :
|
|
|
|
|
MeromorphicOn f (Metric.closedBall 0 r) := by
|
|
|
|
|
exact fun x a => h₁f x trivial
|
|
|
|
|
|
2024-12-20 08:16:22 +01:00
|
|
|
|
theorem MeromorphicOn.restrict_inv
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
(h₁f : MeromorphicOn f ⊤)
|
|
|
|
|
(r : ℝ) :
|
|
|
|
|
h₁f.inv.restrict r = (h₁f.restrict r).inv := by
|
|
|
|
|
funext x
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
|
2024-12-05 16:53:48 +01:00
|
|
|
|
noncomputable def MeromorphicOn.N_zero
|
|
|
|
|
{f : ℂ → ℂ}
|
2024-12-09 19:58:56 +01:00
|
|
|
|
(hf : MeromorphicOn f ⊤) :
|
2024-12-05 16:53:48 +01:00
|
|
|
|
ℝ → ℝ :=
|
2024-12-20 11:30:06 +01:00
|
|
|
|
fun r ↦ ∑ᶠ z, (max 0 ((hf.restrict |r|).divisor z)) * log (r * ‖z‖⁻¹)
|
2024-12-05 16:53:48 +01:00
|
|
|
|
|
|
|
|
|
noncomputable def MeromorphicOn.N_infty
|
|
|
|
|
{f : ℂ → ℂ}
|
2024-12-09 19:58:56 +01:00
|
|
|
|
(hf : MeromorphicOn f ⊤) :
|
2024-12-05 16:53:48 +01:00
|
|
|
|
ℝ → ℝ :=
|
2024-12-20 11:30:06 +01:00
|
|
|
|
fun r ↦ ∑ᶠ z, (max 0 (-((hf.restrict |r|).divisor z))) * log (r * ‖z‖⁻¹)
|
2024-12-05 16:53:48 +01:00
|
|
|
|
|
2024-12-21 07:04:13 +01:00
|
|
|
|
|
2024-12-24 06:50:23 +01:00
|
|
|
|
theorem Nevanlinna_counting₁₁
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{a : ℂ}
|
|
|
|
|
(hf : MeromorphicOn f ⊤) :
|
|
|
|
|
(hf.add (MeromorphicOn.const a)).N_infty = hf.N_infty := by
|
|
|
|
|
|
|
|
|
|
have {z : ℂ} : 0 < (hf z trivial).order → (hf z trivial).order = ((hf.add (MeromorphicOn.const a)) z trivial).order:= by
|
|
|
|
|
intro h
|
|
|
|
|
|
|
|
|
|
let A := (MeromorphicAt.const a)
|
|
|
|
|
rw [←MeromorphicAt.order_add_of_ne_orders (hf z trivial)]
|
|
|
|
|
simp
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
funext r
|
|
|
|
|
unfold MeromorphicOn.N_infty
|
|
|
|
|
let A := (hf.restrict |r|).divisor.finiteSupport (isCompact_closedBall 0 |r|)
|
|
|
|
|
repeat
|
|
|
|
|
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
|
|
|
|
|
apply Finset.sum_congr rfl
|
|
|
|
|
intro x hx
|
|
|
|
|
congr 2
|
|
|
|
|
|
|
|
|
|
simp at hx
|
|
|
|
|
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
|
2024-12-20 08:16:22 +01:00
|
|
|
|
theorem Nevanlinna_counting₀
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
(hf : MeromorphicOn f ⊤) :
|
|
|
|
|
hf.inv.N_infty = hf.N_zero := by
|
2024-12-20 11:30:06 +01:00
|
|
|
|
|
2024-12-20 08:16:22 +01:00
|
|
|
|
funext r
|
|
|
|
|
unfold MeromorphicOn.N_zero MeromorphicOn.N_infty
|
2024-12-20 11:30:06 +01:00
|
|
|
|
let A := (hf.restrict |r|).divisor.finiteSupport (isCompact_closedBall 0 |r|)
|
2024-12-20 08:16:22 +01:00
|
|
|
|
repeat
|
|
|
|
|
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
|
|
|
|
|
apply Finset.sum_congr rfl
|
|
|
|
|
intro x hx
|
|
|
|
|
congr
|
2024-12-20 11:30:06 +01:00
|
|
|
|
let B := hf.restrict_inv |r|
|
2024-12-20 08:16:22 +01:00
|
|
|
|
rw [MeromorphicOn.divisor_inv]
|
|
|
|
|
simp
|
|
|
|
|
--
|
|
|
|
|
exact fun x a => hf x trivial
|
|
|
|
|
--
|
|
|
|
|
intro x
|
|
|
|
|
contrapose
|
|
|
|
|
simp
|
|
|
|
|
intro hx
|
|
|
|
|
rw [hx]
|
|
|
|
|
tauto
|
|
|
|
|
--
|
|
|
|
|
intro x
|
|
|
|
|
contrapose
|
|
|
|
|
simp
|
|
|
|
|
intro hx h₁x
|
2024-12-20 11:30:06 +01:00
|
|
|
|
|
|
|
|
|
rw [MeromorphicOn.divisor_inv (hf.restrict |r|)] at h₁x
|
2024-12-20 08:16:22 +01:00
|
|
|
|
simp at h₁x
|
|
|
|
|
rw [hx] at h₁x
|
|
|
|
|
tauto
|
|
|
|
|
|
|
|
|
|
|
2024-12-05 16:53:48 +01:00
|
|
|
|
theorem Nevanlinna_counting
|
|
|
|
|
{f : ℂ → ℂ}
|
2024-12-09 19:58:56 +01:00
|
|
|
|
(hf : MeromorphicOn f ⊤) :
|
2024-12-20 11:30:06 +01:00
|
|
|
|
hf.N_zero - hf.N_infty = fun r ↦ ∑ᶠ z, ((hf.restrict |r|).divisor z) * log (r * ‖z‖⁻¹) := by
|
2024-12-09 16:00:26 +01:00
|
|
|
|
|
|
|
|
|
funext r
|
|
|
|
|
simp only [Pi.sub_apply]
|
2024-12-09 19:58:56 +01:00
|
|
|
|
unfold MeromorphicOn.N_zero MeromorphicOn.N_infty
|
|
|
|
|
|
2024-12-20 11:30:06 +01:00
|
|
|
|
let A := (hf.restrict |r|).divisor.finiteSupport (isCompact_closedBall 0 |r|)
|
2024-12-09 19:58:56 +01:00
|
|
|
|
repeat
|
|
|
|
|
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
|
|
|
|
|
rw [← Finset.sum_sub_distrib]
|
|
|
|
|
simp_rw [← sub_mul]
|
|
|
|
|
congr
|
|
|
|
|
funext x
|
|
|
|
|
congr
|
2024-12-20 11:30:06 +01:00
|
|
|
|
by_cases h : 0 ≤ (hf.restrict |r|).divisor x
|
2024-12-09 19:58:56 +01:00
|
|
|
|
· simp [h]
|
2024-12-20 11:30:06 +01:00
|
|
|
|
· have h' : 0 ≤ -((hf.restrict |r|).divisor x) := by
|
2024-12-09 19:58:56 +01:00
|
|
|
|
simp at h
|
|
|
|
|
apply Int.le_neg_of_le_neg
|
|
|
|
|
simp
|
|
|
|
|
exact Int.le_of_lt h
|
|
|
|
|
simp at h
|
|
|
|
|
simp [h']
|
|
|
|
|
linarith
|
|
|
|
|
--
|
|
|
|
|
repeat
|
|
|
|
|
intro x
|
|
|
|
|
contrapose
|
|
|
|
|
simp
|
|
|
|
|
intro hx
|
|
|
|
|
rw [hx]
|
|
|
|
|
tauto
|
2024-12-05 16:53:48 +01:00
|
|
|
|
|
2024-09-14 08:38:04 +02:00
|
|
|
|
|
2024-12-05 16:53:48 +01:00
|
|
|
|
--
|
|
|
|
|
|
|
|
|
|
noncomputable def MeromorphicOn.m_infty
|
|
|
|
|
{f : ℂ → ℂ}
|
2024-12-09 19:58:56 +01:00
|
|
|
|
(_ : MeromorphicOn f ⊤) :
|
2024-12-05 16:53:48 +01:00
|
|
|
|
ℝ → ℝ :=
|
|
|
|
|
fun r ↦ (2 * π)⁻¹ * ∫ x in (0)..(2 * π), logpos ‖f (circleMap 0 r x)‖
|
|
|
|
|
|
2024-12-19 16:10:51 +01:00
|
|
|
|
|
2024-12-05 16:53:48 +01:00
|
|
|
|
theorem Nevanlinna_proximity
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{r : ℝ}
|
|
|
|
|
(h₁f : MeromorphicOn f ⊤) :
|
|
|
|
|
(2 * π)⁻¹ * ∫ x in (0)..(2 * π), log ‖f (circleMap 0 r x)‖ = (h₁f.m_infty r) - (h₁f.inv.m_infty r) := by
|
2024-12-19 16:10:51 +01:00
|
|
|
|
|
2024-12-05 16:53:48 +01:00
|
|
|
|
unfold MeromorphicOn.m_infty
|
|
|
|
|
rw [← mul_sub]; congr
|
|
|
|
|
rw [← intervalIntegral.integral_sub]; congr
|
|
|
|
|
funext x
|
|
|
|
|
simp_rw [loglogpos]; congr
|
|
|
|
|
exact Eq.symm (IsAbsoluteValue.abv_inv Norm.norm (f (circleMap 0 r x)))
|
|
|
|
|
--
|
2024-12-19 21:24:13 +01:00
|
|
|
|
apply MeromorphicOn.integrable_logpos_abs_f
|
2024-12-20 08:16:22 +01:00
|
|
|
|
intro z hx
|
|
|
|
|
exact h₁f z trivial
|
|
|
|
|
--
|
|
|
|
|
apply MeromorphicOn.integrable_logpos_abs_f
|
|
|
|
|
exact MeromorphicOn.inv_iff.mpr fun x a => h₁f x trivial
|
2024-12-19 16:10:51 +01:00
|
|
|
|
|
2024-12-19 21:24:13 +01:00
|
|
|
|
|
2024-12-05 16:53:48 +01:00
|
|
|
|
noncomputable def MeromorphicOn.T_infty
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
(hf : MeromorphicOn f ⊤) :
|
2024-12-05 13:51:00 +01:00
|
|
|
|
ℝ → ℝ :=
|
2024-12-05 16:53:48 +01:00
|
|
|
|
hf.m_infty + hf.N_infty
|
|
|
|
|
|
2024-12-20 08:16:22 +01:00
|
|
|
|
|
2024-12-05 16:53:48 +01:00
|
|
|
|
theorem Nevanlinna_firstMain₁
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
(h₁f : MeromorphicOn f ⊤)
|
|
|
|
|
(h₂f : StronglyMeromorphicAt f 0)
|
|
|
|
|
(h₃f : f 0 ≠ 0) :
|
2024-12-20 11:30:06 +01:00
|
|
|
|
(fun _ ↦ log ‖f 0‖) + h₁f.inv.T_infty = h₁f.T_infty := by
|
2024-12-20 08:16:22 +01:00
|
|
|
|
|
|
|
|
|
rw [add_eq_of_eq_sub]
|
|
|
|
|
unfold MeromorphicOn.T_infty
|
|
|
|
|
|
2024-12-20 09:42:56 +01:00
|
|
|
|
have {A B C D : ℝ → ℝ} : A + B - (C + D) = A - C - (D - B) := by
|
2024-12-20 08:16:22 +01:00
|
|
|
|
ring
|
|
|
|
|
rw [this]
|
|
|
|
|
clear this
|
|
|
|
|
|
2024-12-20 09:42:56 +01:00
|
|
|
|
rw [Nevanlinna_counting₀ h₁f]
|
|
|
|
|
rw [Nevanlinna_counting h₁f]
|
2024-12-05 16:53:48 +01:00
|
|
|
|
funext r
|
|
|
|
|
simp
|
2024-12-20 08:16:22 +01:00
|
|
|
|
rw [← Nevanlinna_proximity h₁f]
|
|
|
|
|
|
2024-12-20 11:30:06 +01:00
|
|
|
|
by_cases h₁r : r = 0
|
|
|
|
|
rw [h₁r]
|
|
|
|
|
simp
|
|
|
|
|
have : π⁻¹ * 2⁻¹ * (2 * π * log (Complex.abs (f 0))) = (π⁻¹ * (2⁻¹ * 2) * π) * log (Complex.abs (f 0)) := by
|
|
|
|
|
ring
|
|
|
|
|
rw [this]
|
|
|
|
|
clear this
|
|
|
|
|
simp [pi_ne_zero]
|
|
|
|
|
|
|
|
|
|
by_cases hr : 0 < r
|
|
|
|
|
let A := jensen hr f (h₁f.restrict r) h₂f h₃f
|
|
|
|
|
simp at A
|
|
|
|
|
rw [A]
|
|
|
|
|
clear A
|
|
|
|
|
simp
|
|
|
|
|
have {A B : ℝ} : -A + B = B - A := by ring
|
|
|
|
|
rw [this]
|
|
|
|
|
have : |r| = r := by
|
|
|
|
|
rw [← abs_of_pos hr]
|
|
|
|
|
simp
|
|
|
|
|
rw [this]
|
|
|
|
|
|
|
|
|
|
-- case 0 < -r
|
|
|
|
|
have h₂r : 0 < -r := by
|
|
|
|
|
simp [h₁r, hr]
|
|
|
|
|
by_contra hCon
|
|
|
|
|
-- Assume ¬(r < 0), which means r >= 0
|
|
|
|
|
push_neg at hCon
|
|
|
|
|
-- Now h is r ≥ 0, so we split into cases
|
|
|
|
|
rcases lt_or_eq_of_le hCon with h|h
|
|
|
|
|
· tauto
|
|
|
|
|
· tauto
|
|
|
|
|
let A := jensen h₂r f (h₁f.restrict (-r)) h₂f h₃f
|
|
|
|
|
simp at A
|
|
|
|
|
rw [A]
|
|
|
|
|
clear A
|
|
|
|
|
simp
|
|
|
|
|
have {A B : ℝ} : -A + B = B - A := by ring
|
|
|
|
|
rw [this]
|
|
|
|
|
|
|
|
|
|
congr 1
|
|
|
|
|
congr 1
|
|
|
|
|
let A := integrabl_congr_negRadius (f := (fun z ↦ log (Complex.abs (f z)))) (r := r)
|
|
|
|
|
rw [A]
|
|
|
|
|
have : |r| = -r := by
|
|
|
|
|
rw [← abs_of_pos h₂r]
|
|
|
|
|
simp
|
|
|
|
|
rw [this]
|
2024-12-20 08:16:22 +01:00
|
|
|
|
|
2024-12-05 16:53:48 +01:00
|
|
|
|
|
|
|
|
|
theorem Nevanlinna_firstMain₂
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{a : ℂ}
|
|
|
|
|
{r : ℝ}
|
|
|
|
|
(h₁f : MeromorphicOn f ⊤) :
|
|
|
|
|
|(h₁f.T_infty r) - ((h₁f.sub (MeromorphicOn.const a)).T_infty r)| ≤ logpos ‖a‖ + log 2 := by
|
2024-12-20 11:30:06 +01:00
|
|
|
|
|
2024-12-20 11:54:02 +01:00
|
|
|
|
-- See Lang, p. 168
|
|
|
|
|
|
2024-12-05 16:53:48 +01:00
|
|
|
|
sorry
|