2024-09-10 10:45:53 +02:00
|
|
|
|
import Mathlib.Analysis.Analytic.IsolatedZeros
|
|
|
|
|
import Mathlib.Analysis.Complex.Basic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem AnalyticAt.order_mul
|
|
|
|
|
{f₁ f₂ : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
|
|
|
|
(hf₂ : AnalyticAt ℂ f₂ z₀) :
|
|
|
|
|
(AnalyticAt.mul hf₁ hf₂).order = hf₁.order + hf₂.order := by
|
|
|
|
|
by_cases h₂f₁ : hf₁.order = ⊤
|
|
|
|
|
· simp [h₂f₁]
|
|
|
|
|
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
|
|
|
|
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₁
|
|
|
|
|
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁
|
|
|
|
|
use t
|
|
|
|
|
constructor
|
|
|
|
|
· intro y hy
|
|
|
|
|
rw [h₁t y hy]
|
|
|
|
|
ring
|
|
|
|
|
· exact ⟨h₂t, h₃t⟩
|
|
|
|
|
· by_cases h₂f₂ : hf₂.order = ⊤
|
|
|
|
|
· simp [h₂f₂]
|
|
|
|
|
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
|
|
|
|
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₂
|
|
|
|
|
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂
|
|
|
|
|
use t
|
|
|
|
|
constructor
|
|
|
|
|
· intro y hy
|
|
|
|
|
rw [h₁t y hy]
|
|
|
|
|
ring
|
|
|
|
|
· exact ⟨h₂t, h₃t⟩
|
|
|
|
|
· obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticAt.order_eq_nat_iff hf₁ ↑hf₁.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₁))
|
|
|
|
|
obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (AnalyticAt.order_eq_nat_iff hf₂ ↑hf₂.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₂))
|
|
|
|
|
rw [← ENat.coe_toNat h₂f₁, ← ENat.coe_toNat h₂f₂, ← ENat.coe_add]
|
|
|
|
|
rw [AnalyticAt.order_eq_nat_iff (AnalyticAt.mul hf₁ hf₂) ↑(hf₁.order.toNat + hf₂.order.toNat)]
|
|
|
|
|
use g₁ * g₂
|
|
|
|
|
constructor
|
|
|
|
|
· exact AnalyticAt.mul h₁g₁ h₁g₂
|
|
|
|
|
· constructor
|
|
|
|
|
· simp; tauto
|
|
|
|
|
· obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 h₃g₁
|
|
|
|
|
obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 h₃g₂
|
|
|
|
|
rw [eventually_nhds_iff]
|
|
|
|
|
use t₁ ∩ t₂
|
|
|
|
|
constructor
|
|
|
|
|
· intro y hy
|
|
|
|
|
rw [h₁t₁ y hy.1, h₁t₂ y hy.2]
|
|
|
|
|
simp; ring
|
|
|
|
|
· constructor
|
|
|
|
|
· exact IsOpen.inter h₂t₁ h₂t₂
|
|
|
|
|
· exact Set.mem_inter h₃t₁ h₃t₂
|
2024-09-10 14:21:08 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem AnalyticAt.order_eq_zero_iff
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : AnalyticAt ℂ f z₀) :
|
|
|
|
|
hf.order = 0 ↔ f z₀ ≠ 0 := by
|
|
|
|
|
|
|
|
|
|
have : (0 : ENat) = (0 : Nat) := by rfl
|
|
|
|
|
rw [this, AnalyticAt.order_eq_nat_iff hf 0]
|
|
|
|
|
|
|
|
|
|
constructor
|
|
|
|
|
· intro hz
|
|
|
|
|
obtain ⟨g, _, h₂g, h₃g⟩ := hz
|
|
|
|
|
simp at h₃g
|
|
|
|
|
rw [Filter.Eventually.self_of_nhds h₃g]
|
|
|
|
|
tauto
|
|
|
|
|
· intro hz
|
|
|
|
|
use f
|
|
|
|
|
constructor
|
|
|
|
|
· exact hf
|
|
|
|
|
· constructor
|
|
|
|
|
· exact hz
|
|
|
|
|
· simp
|
2024-09-10 14:43:28 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem AnalyticAt.supp_order_toNat
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : AnalyticAt ℂ f z₀) :
|
|
|
|
|
hf.order.toNat ≠ 0 → f z₀ = 0 := by
|
|
|
|
|
|
|
|
|
|
contrapose
|
|
|
|
|
intro h₁f
|
|
|
|
|
simp [hf.order_eq_zero_iff.2 h₁f]
|