nevanlinna/Nevanlinna/harmonicAt_meanValue.lean

89 lines
2.8 KiB
Plaintext
Raw Normal View History

import Mathlib.Analysis.Complex.CauchyIntegral
import Nevanlinna.holomorphic_examples
theorem harmonic_meanValue
{f : }
2024-08-08 14:26:53 +02:00
{z : }
(ρ R : )
(hR : R > 0)
(hρ : ρ > R)
(hf : ∀ x ∈ Metric.ball z ρ , HarmonicAt f x)
:
(∫ (x : ) in (0)..2 * Real.pi, f (circleMap z R x)) = 2 * Real.pi * f z
:= by
2024-08-08 14:26:53 +02:00
obtain ⟨F, h₁F, h₂F⟩ := harmonic_is_realOfHolomorphic (gt_trans hρ hR) hf
2024-08-08 14:26:53 +02:00
have hrρ : Metric.ball z R ⊆ Metric.ball z ρ := by
intro x hx
exact gt_trans hρ hx
2024-08-08 14:26:53 +02:00
have reg₀F : DifferentiableOn F (Metric.ball z ρ) := by
intro x hx
apply DifferentiableAt.differentiableWithinAt
apply HolomorphicAt.differentiableAt (h₁F x _)
exact hx
have reg₁F : DifferentiableOn F (Metric.ball z R) := by
intro x hx
apply DifferentiableAt.differentiableWithinAt
apply HolomorphicAt.differentiableAt (h₁F x _)
exact hrρ hx
have : (∮ (x : ) in C(z, R), (x - z)⁻¹ • F x) = (2 * ↑Real.pi * Complex.I) • F z := by
let s : Set := ∅
let hs : s.Countable := Set.countable_empty
let _ : := 0
2024-08-08 14:26:53 +02:00
have hw : (z : ) ∈ Metric.ball z R := Metric.mem_ball_self hR
have hc : ContinuousOn F (Metric.closedBall z R) := by
apply reg₀F.continuousOn.mono
intro x hx
simp at hx
simp
linarith
have hd : ∀ x ∈ Metric.ball z R \ s, DifferentiableAt F x := by
intro x hx
let A := reg₁F x hx.1
apply A.differentiableAt
apply (IsOpen.mem_nhds_iff ?hs).mpr
exact hx.1
exact Metric.isOpen_ball
let CIF := Complex.circleIntegral_sub_inv_smul_of_differentiable_on_off_countable hs hw hc hd
simp at CIF
assumption
unfold circleIntegral at this
simp_rw [deriv_circleMap] at this
2024-08-08 14:26:53 +02:00
have t₁ {θ : } : (circleMap 0 R θ * Complex.I) • (circleMap 0 R θ)⁻¹ • F (circleMap z R θ) = Complex.I • F (circleMap z R θ) := by
rw [← smul_assoc]
congr 1
simp
nth_rw 1 [mul_comm]
rw [← mul_assoc]
simp
apply inv_mul_cancel
apply circleMap_ne_center
exact Ne.symm (ne_of_lt hR)
simp_rw [t₁] at this
simp at this
have t₂ : Complex.reCLM (-Complex.I * (Complex.I * ∫ (x : ) in (0)..2 * Real.pi, F (circleMap 0 R x))) = Complex.reCLM (-Complex.I * (2 * ↑Real.pi * Complex.I * F 0)) := by
rw [this]
simp at t₂
have xx {z : } : (F z).re = f z := by
rw [← h₂F]
simp
simp_rw [xx] at t₂
have x₁ {z : } : z.re = Complex.reCLM z := by rfl
rw [x₁] at t₂
rw [← ContinuousLinearMap.intervalIntegral_comp_comm] at t₂
simp at t₂
simp_rw [xx] at t₂
exact t₂
-- IntervalIntegrable (fun x => F (circleMap 0 1 x)) MeasureTheory.volume 0 (2 * Real.pi)
apply Continuous.intervalIntegrable
apply Continuous.comp
exact regF.continuous
exact continuous_circleMap 0 R