nevanlinna/Nevanlinna/specialFunctions_CircleInte...

94 lines
2.8 KiB
Plaintext
Raw Normal View History

2024-08-15 08:26:55 +02:00
import Mathlib.Analysis.SpecialFunctions.Integrals
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
import Mathlib.MeasureTheory.Integral.CircleIntegral
import Mathlib.MeasureTheory.Measure.Restrict
2024-08-15 12:10:18 +02:00
import Nevanlinna.specialFunctions_Integral_log_sin
2024-08-15 08:26:55 +02:00
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
lemma int₁₁ : ∫ (x : ) in (0)..π, log (4 * sin x ^ 2) = 0 := by
2024-08-15 12:10:18 +02:00
have t₁ {x : } : x ∈ Set.Ioo 0 π → log (4 * sin x ^ 2) = log 4 + 2 * log (sin x) := by
intro hx
rw [log_mul, log_pow]
rfl
exact Ne.symm (NeZero.ne' 4)
apply pow_ne_zero 2
apply (fun a => Ne.symm (ne_of_lt a))
exact sin_pos_of_mem_Ioo hx
have t₂ : Set.EqOn (fun y ↦ log (4 * sin y ^ 2)) (fun y ↦ log 4 + 2 * log (sin y)) (Set.Ioo 0 π) := by
intro x hx
simp
rw [t₁ hx]
rw [intervalIntegral.integral_congr_volume pi_pos t₂]
rw [intervalIntegral.integral_add]
rw [intervalIntegral.integral_const_mul]
simp
rw [integral_log_sin₂]
have : (4 : ) = 2 * 2 := by norm_num
rw [this, log_mul]
ring
norm_num
norm_num
-- IntervalIntegrable (fun x => log 4) volume 0 π
simp
-- IntervalIntegrable (fun x => 2 * log (sin x)) volume 0 π
apply IntervalIntegrable.const_mul
exact intervalIntegrable_log_sin
2024-08-15 08:26:55 +02:00
lemma int₁ :
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
have {x : } : log ‖circleMap 0 1 x - 1‖ = log (4 * sin (x / 2) ^ 2) / 2 := by
dsimp [Complex.abs]
rw [log_sqrt (Complex.normSq_nonneg (circleMap 0 1 x - 1))]
congr
calc Complex.normSq (circleMap 0 1 x - 1)
_ = (cos x - 1) * (cos x - 1) + sin x * sin x := by
dsimp [circleMap]
rw [Complex.normSq_apply]
simp
_ = sin x ^ 2 + cos x ^ 2 + 1 - 2 * cos x := by
ring
_ = 2 - 2 * cos x := by
rw [sin_sq_add_cos_sq]
norm_num
_ = 2 - 2 * cos (2 * (x / 2)) := by
rw [← mul_div_assoc]
congr; norm_num
_ = 4 - 4 * Real.cos (x / 2) ^ 2 := by
rw [cos_two_mul]
ring
_ = 4 * sin (x / 2) ^ 2 := by
nth_rw 1 [← mul_one 4, ← sin_sq_add_cos_sq (x / 2)]
ring
simp_rw [this]
simp
have : ∫ (x : ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2) = 2 * ∫ (x : ) in (0)..π, log (4 * sin x ^ 2) := by
have : 1 = 2 * (2 : )⁻¹ := by exact Eq.symm (mul_inv_cancel_of_invertible 2)
nth_rw 1 [← one_mul (∫ (x : ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2))]
rw [← mul_inv_cancel_of_invertible 2, mul_assoc]
let f := fun y ↦ log (4 * sin y ^ 2)
have {x : } : log (4 * sin (x / 2) ^ 2) = f (x / 2) := by simp
conv =>
left
right
right
arg 1
intro x
rw [this]
rw [intervalIntegral.inv_mul_integral_comp_div 2]
simp
rw [this]
simp
exact int₁₁