import Mathlib.Analysis.SpecialFunctions.Integrals import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog import Mathlib.MeasureTheory.Integral.CircleIntegral import Mathlib.MeasureTheory.Measure.Restrict import Nevanlinna.specialFunctions_Integral_log_sin open scoped Interval Topology open Real Filter MeasureTheory intervalIntegral lemma int₁₁ : ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) = 0 := by have t₁ {x : ℝ} : x ∈ Set.Ioo 0 π → log (4 * sin x ^ 2) = log 4 + 2 * log (sin x) := by intro hx rw [log_mul, log_pow] rfl exact Ne.symm (NeZero.ne' 4) apply pow_ne_zero 2 apply (fun a => Ne.symm (ne_of_lt a)) exact sin_pos_of_mem_Ioo hx have t₂ : Set.EqOn (fun y ↦ log (4 * sin y ^ 2)) (fun y ↦ log 4 + 2 * log (sin y)) (Set.Ioo 0 π) := by intro x hx simp rw [t₁ hx] rw [intervalIntegral.integral_congr_volume pi_pos t₂] rw [intervalIntegral.integral_add] rw [intervalIntegral.integral_const_mul] simp rw [integral_log_sin₂] have : (4 : ℝ) = 2 * 2 := by norm_num rw [this, log_mul] ring norm_num norm_num -- IntervalIntegrable (fun x => log 4) volume 0 π simp -- IntervalIntegrable (fun x => 2 * log (sin x)) volume 0 π apply IntervalIntegrable.const_mul exact intervalIntegrable_log_sin lemma int₁ : ∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by have {x : ℝ} : log ‖circleMap 0 1 x - 1‖ = log (4 * sin (x / 2) ^ 2) / 2 := by dsimp [Complex.abs] rw [log_sqrt (Complex.normSq_nonneg (circleMap 0 1 x - 1))] congr calc Complex.normSq (circleMap 0 1 x - 1) _ = (cos x - 1) * (cos x - 1) + sin x * sin x := by dsimp [circleMap] rw [Complex.normSq_apply] simp _ = sin x ^ 2 + cos x ^ 2 + 1 - 2 * cos x := by ring _ = 2 - 2 * cos x := by rw [sin_sq_add_cos_sq] norm_num _ = 2 - 2 * cos (2 * (x / 2)) := by rw [← mul_div_assoc] congr; norm_num _ = 4 - 4 * Real.cos (x / 2) ^ 2 := by rw [cos_two_mul] ring _ = 4 * sin (x / 2) ^ 2 := by nth_rw 1 [← mul_one 4, ← sin_sq_add_cos_sq (x / 2)] ring simp_rw [this] simp have : ∫ (x : ℝ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2) = 2 * ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) := by have : 1 = 2 * (2 : ℝ)⁻¹ := by exact Eq.symm (mul_inv_cancel_of_invertible 2) nth_rw 1 [← one_mul (∫ (x : ℝ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2))] rw [← mul_inv_cancel_of_invertible 2, mul_assoc] let f := fun y ↦ log (4 * sin y ^ 2) have {x : ℝ} : log (4 * sin (x / 2) ^ 2) = f (x / 2) := by simp conv => left right right arg 1 intro x rw [this] rw [intervalIntegral.inv_mul_integral_comp_div 2] simp rw [this] simp exact int₁₁