2024-08-13 08:42:47 +02:00
|
|
|
|
import Mathlib.Analysis.SpecialFunctions.Integrals
|
|
|
|
|
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
|
|
|
|
|
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
|
|
|
|
|
|
|
|
|
open scoped Interval Topology
|
|
|
|
|
open Real Filter MeasureTheory intervalIntegral
|
|
|
|
|
|
2024-08-13 09:46:30 +02:00
|
|
|
|
-- The following theorem was suggested by Gareth Ma on Zulip
|
|
|
|
|
|
2024-08-13 08:42:47 +02:00
|
|
|
|
theorem logInt
|
|
|
|
|
{t : ℝ}
|
|
|
|
|
(ht : 0 < t) :
|
|
|
|
|
∫ x in (0 : ℝ)..t, log x = t * log t - t := by
|
|
|
|
|
rw [← integral_add_adjacent_intervals (b := 1)]
|
|
|
|
|
trans (-1) + (t * log t - t + 1)
|
|
|
|
|
· congr
|
|
|
|
|
· -- ∫ x in 0..1, log x = -1, same proof as before
|
|
|
|
|
rw [integral_eq_sub_of_hasDerivAt_of_tendsto (f := fun x ↦ x * log x - x) (fa := 0) (fb := -1)]
|
|
|
|
|
· simp
|
|
|
|
|
· simp
|
|
|
|
|
· intro x hx
|
|
|
|
|
norm_num at hx
|
|
|
|
|
convert (hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x) using 1
|
|
|
|
|
norm_num
|
|
|
|
|
· rw [← neg_neg log]
|
|
|
|
|
apply IntervalIntegrable.neg
|
|
|
|
|
apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x))
|
|
|
|
|
· exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg
|
|
|
|
|
· intro x hx
|
|
|
|
|
norm_num at hx
|
|
|
|
|
convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1
|
|
|
|
|
norm_num
|
|
|
|
|
· intro x hx
|
|
|
|
|
norm_num at hx
|
|
|
|
|
rw [Pi.neg_apply, Left.nonneg_neg_iff]
|
|
|
|
|
exact (log_nonpos_iff hx.left).mpr hx.right.le
|
|
|
|
|
· have := tendsto_log_mul_rpow_nhds_zero zero_lt_one
|
|
|
|
|
simp_rw [rpow_one, mul_comm] at this
|
|
|
|
|
-- tendsto_nhdsWithin_of_tendsto_nhds should be under Tendsto namespace
|
|
|
|
|
convert this.sub (tendsto_nhdsWithin_of_tendsto_nhds tendsto_id)
|
|
|
|
|
norm_num
|
|
|
|
|
· rw [(by simp : -1 = 1 * log 1 - 1)]
|
|
|
|
|
apply tendsto_nhdsWithin_of_tendsto_nhds
|
|
|
|
|
exact (continuousAt_id.mul (continuousAt_log one_ne_zero)).sub continuousAt_id
|
|
|
|
|
· -- ∫ x in 1..t, log x = t * log t + 1, just use integral_log_of_pos
|
|
|
|
|
rw [integral_log_of_pos zero_lt_one ht]
|
|
|
|
|
norm_num
|
|
|
|
|
· abel
|
|
|
|
|
· -- log is integrable on [[0, 1]]
|
|
|
|
|
rw [← neg_neg log]
|
|
|
|
|
apply IntervalIntegrable.neg
|
|
|
|
|
apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x))
|
|
|
|
|
· exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg
|
|
|
|
|
· intro x hx
|
|
|
|
|
norm_num at hx
|
|
|
|
|
convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1
|
|
|
|
|
norm_num
|
|
|
|
|
· intro x hx
|
|
|
|
|
norm_num at hx
|
|
|
|
|
rw [Pi.neg_apply, Left.nonneg_neg_iff]
|
|
|
|
|
exact (log_nonpos_iff hx.left).mpr hx.right.le
|
|
|
|
|
· -- log is integrable on [[0, t]]
|
|
|
|
|
simp [Set.mem_uIcc, ht]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lemma int₁ :
|
|
|
|
|
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
|
2024-08-13 09:46:30 +02:00
|
|
|
|
|
2024-08-13 10:25:03 +02:00
|
|
|
|
have {x : ℝ} : log ‖circleMap 0 1 x - 1‖ = log (4 * sin (x / 2) ^ 2) / 2 := by
|
|
|
|
|
dsimp [Complex.abs]
|
|
|
|
|
rw [log_sqrt (Complex.normSq_nonneg (circleMap 0 1 x - 1))]
|
|
|
|
|
congr
|
2024-08-13 09:46:30 +02:00
|
|
|
|
calc Complex.normSq (circleMap 0 1 x - 1)
|
|
|
|
|
_ = (cos x - 1) * (cos x - 1) + sin x * sin x := by
|
|
|
|
|
dsimp [circleMap]
|
|
|
|
|
rw [Complex.normSq_apply]
|
|
|
|
|
simp
|
|
|
|
|
_ = sin x ^ 2 + cos x ^ 2 + 1 - 2 * cos x := by
|
|
|
|
|
ring
|
|
|
|
|
_ = 2 - 2 * cos x := by
|
|
|
|
|
rw [sin_sq_add_cos_sq]
|
|
|
|
|
norm_num
|
|
|
|
|
_ = 2 - 2 * cos (2 * (x / 2)) := by
|
|
|
|
|
rw [← mul_div_assoc]
|
|
|
|
|
congr; norm_num
|
|
|
|
|
_ = 4 - 4 * Real.cos (x / 2) ^ 2 := by
|
|
|
|
|
rw [cos_two_mul]
|
2024-08-13 10:25:03 +02:00
|
|
|
|
ring
|
2024-08-13 09:46:30 +02:00
|
|
|
|
_ = 4 * sin (x / 2) ^ 2 := by
|
2024-08-13 10:25:03 +02:00
|
|
|
|
nth_rw 1 [← mul_one 4, ← sin_sq_add_cos_sq (x / 2)]
|
|
|
|
|
ring
|
|
|
|
|
simp_rw [this]
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
have : ∫ (x : ℝ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2) = 2 * ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) := by
|
|
|
|
|
have : 1 = 2 * (2 : ℝ)⁻¹ := by exact Eq.symm (mul_inv_cancel_of_invertible 2)
|
|
|
|
|
nth_rw 1 [← one_mul (∫ (x : ℝ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2))]
|
|
|
|
|
rw [← mul_inv_cancel_of_invertible 2, mul_assoc]
|
|
|
|
|
let f := fun y ↦ log (4 * sin y ^ 2)
|
|
|
|
|
have {x : ℝ} : log (4 * sin (x / 2) ^ 2) = f (x / 2) := by simp
|
|
|
|
|
conv =>
|
|
|
|
|
left
|
|
|
|
|
right
|
|
|
|
|
right
|
|
|
|
|
arg 1
|
|
|
|
|
intro x
|
|
|
|
|
rw [this]
|
|
|
|
|
rw [intervalIntegral.inv_mul_integral_comp_div 2]
|
|
|
|
|
simp
|
|
|
|
|
rw [this]
|
|
|
|
|
simp
|
2024-08-13 09:46:30 +02:00
|
|
|
|
|
|
|
|
|
|
2024-08-13 08:42:47 +02:00
|
|
|
|
|
|
|
|
|
sorry
|